第4258回:膨胀宇宙终极命运,希格斯机制恩格勒
【皇氏古建築大全】【黃劍博采風追影】【環遊尋美拾遺錄】
无欺于死者,无负于生者,无愧于来者
第4258回:膨胀宇宙终极命运,希格斯机制恩格勒
《采風追影文化傳播》公益科普教育文章,任何形式转载请联系作者(微信Jumboheritagelist 或 Huang_Jumbo)
宇宙的终极命运是物理宇宙学中一个主要的议题。许多科学理论都对宇宙的命运作出预测并成为竞争的对手,包括未来与时间是有限还是无限。
自从宇宙起源于大爆炸并经历暴胀的概念为大多数科学家接受之后,宇宙的终极命运就成为宇宙论可以探讨的问题,取决于物理上的性质:在宇宙中的质量/能量,它们的平均密度和膨胀速度。
在阿尔伯特·爱因斯坦于1916年提出广义相对论之后,宇宙的终极命运在科学上成为能够探讨的问题,可以用广义相对论来描述有最大规模的宇宙尺度。广义相对论的方程有许多不同的解,每个解都意味着一种可能的宇宙终极命运。 亚历山大·弗里德曼在1922年就提出了一些如同乔治·勒梅特在1927年提出的解。其中有一些宇宙最初是从奇点开始膨胀,基本上,这就是大爆炸。
在1931年,爱德温·哈勃出版他研究的结论:根据他对遥远星系造父变星的观测,宇宙是膨胀的。此后,宇宙的开始和它可能的结束就成为科学研究的重要议题。
在1927年,乔治·勒梅特提出以后被称为大爆炸的宇宙起源理论。在1948年,弗雷德·霍伊尔提出了反对的稳态理论,认为宇宙在统计上是稳定不变的,但是不断的有新物质被稳定的创造而扩大。这两个理论都有积极的赞同者,直到1965年阿诺·彭齐亚斯和罗伯特·威尔逊发现宇宙微波背景辐射,这是大爆炸理论预测的一个事实,并且是稳态理论所无法解释的。结果,大爆炸理论很快就成为宇宙起源最普遍被接受和持有的观点。
根据天文观测和宇宙学理论,可以对可观测宇宙未来的演化作出预言。均匀各向同性的宇宙的膨胀满足1930年代所提出的FLRW度规。根据这一方程(不考虑暗能量的时候),物质的引力会导致宇宙的膨胀减速。宇宙的最终命运决定于物质的多少:如果物质密度超过临界密度,宇宙的膨胀最后会停止,并逆转为收缩,最终形成与大爆炸相对的一个“大挤压”(英语:Big crunch);如果物质密度等于或低于临界密度,则宇宙会一直膨胀下去。另外,宇宙的几何形状也与密度有关: 如果密度大于临界密度,宇宙的几何应该是封闭的;如果密度等于临界密度,宇宙的几何是平直的;如果宇宙的密度小于临界密度,宇宙的几何是开放的。并且,宇宙的膨胀总是减速的。
然而,上述说法只考虑了物质质量之数量,而并未考虑暗能量的数值,即是只代表了ΩΛ=0而ΩM分别为不同数值的情况。若然ΩΛ也考虑在内的话,开放宇宙(曲率为负)即使Ω小于0也可以到达大挤压,封闭宇宙(曲率为正)即使Ω大于0也可以永远加速膨胀。在“不等CDM”模型成立之前提下,相关常数之最新观测值表示,宇宙曲率接近平坦,膨胀速度则在加速。
研究宇宙的本质与未来命运已经持续很多年了。描述宇宙的科学模型都会将宇宙的亚稳定性纳入考量,也就是说宇宙很可能拥有很长的寿命,但并不是完全稳定,空间某些区域可能在未来某个时刻被摧毁,因此倒塌成为一种更加稳定的真空态。假若能够更准确地测出希格斯玻色子与顶夸克的质量、标准模型能够正确地描述粒子的物理行为甚至到普朗刻尺度的极端能量,则可以得知宇宙的现有真空态是否稳定,还仅仅只是长寿(有时这会被误解为“希格斯玻色子终结了宇宙”)。而质量大约在125 – 127 GeV值域内的希格斯玻色子似乎非常接近分割稳定区域与亚稳定区域的边界。更明确的答案仍需等待更准确地测量顶夸克的极点质量。
假若测量结果建议,宇宙的真空是一种伪真空,则这意味着当今宇宙的作用力、粒子、架构可能不再存在,在几十亿年之后,可能会被另外一种宇宙全盘替代,假若它能够成核。准确测量顶夸克质量可能需要新一代高端精密的正负电子对撞机。
有物理宇宙学家指出,宇宙的未来很可能为继续膨胀。如果事实如此,宇宙将因其膨胀而继续冷却,导致达到不足以维持生命的温度。因此,膨胀宇宙的未来又称为大冻结。膨胀宇宙的未来将会是苍凉的。若根据宇宙学常数加速了宇宙的膨胀,星系间的距离将会持续增加。红移将会被拉长,到达的光子将会是长波长和低能量的光子。
恒星的形成仍会维持于1×1012至1×1014年,但形成恒星的气体将会耗尽。当最后一颗恒星用完其燃料后,宇宙就不可能再有恒星诞生。根据预测质子衰变的理论,恒星残余物将会消失,剩下的将会只是黑洞,而黑洞亦会因放出霍金辐射而慢慢消失。最终,如果宇宙温度下降到一个程度,那么再没有活动能在宇宙中作出,从而导致宇宙热寂。届时,宇宙将会空无一切。温度亦会持续下降。
宇宙的未来有很多可能性,而这些主要有3种:持续膨胀、停止膨胀和收缩。
宇宙因星系间并无回返的引力作用而持续膨胀,最终走向膨胀宇宙的未来,导致热寂(大冻结)甚至是大撕裂。
停止膨胀:宇宙若无足够能量将会停止膨胀,停止膨胀亦会是最理想的环境,宇宙温度适中之余便有足够资源形成恒星甚至生命。
收缩:宇宙膨胀到某一阶段将会停止膨胀并反过来收缩,收缩亦会缩小各星系间的距离,令宇宙温度上升,最后导致和大爆炸相反的大挤压,但这样可能形成一个新的宇宙。
世界上有很多科学家一直在研究膨胀宇宙的未来,其中的佼佼者是希格斯和恩格勒。
彼得·威尔·希格斯出生于1929年5月29日,他是英国理论物理学家,爱丁堡大学荣誉退休教授,他以希格斯机制与希格斯粒子而闻名于世。彼得·希格斯出生在英格兰泰恩河畔纽塞,他在1960年毕业于伦敦国王学院,1960年到1996年期间曾在爱丁堡大学任教。
2012年7月4日,CERN宣布LHC的紧凑μ子线圈探测到质量为125.3±0.6GeV的新粒子(超过背景期望值4.9个标准差),超环面仪器测量到质量为126.5GeV的新粒子。而在2013年3月14日,欧洲核子研究组织发布新闻稿表示,先前探测到的新粒子是希格斯玻色子。希格斯机制广泛被视为粒子物理学标准模型的重要理论基础。
彼得·希格斯获得过许多奖项,包括1997年获得狄拉克奖章及英国物理学会理论物理杰出贡献奖、2004年获得沃尔夫物理学奖和2010年荣获樱井奖。 2013年,因为“亚原子粒子质量的生成机制理论,促进了人类对这方面的理解,近来经欧洲核子研究组织属下大型强子对撞机的超环面仪器及紧凑μ子线圈探测器所发现基本粒子而获得证实”,希格斯与弗朗索瓦·恩格勒共同获授诺贝尔物理学奖。
彼得·希格斯出生在英格兰泰恩河畔纽塞,父亲曾在BBC担任声音工程师。希格斯童年时患有气喘,后来因为父亲工作的缘故,全家在第二次世界大战期间搬离泰恩河畔纽塞,他也因此没有继续在学校接受教育。希格斯的父亲后来居住在贝德福德,希格斯与母亲则留在布里斯托。他后来进入可安文法学校就读,并受到校友保罗·狄拉克在物理方面的影响。
他在17岁时进入伦敦市立中学就读,专研数学。彼得·希格斯后来获得伦敦国王学院物理学位,并成为爱丁堡大学研究员,也曾在伦敦帝国学院及伦敦大学学院任职。希格斯在1960年返回爱丁堡大学担任讲师,然后在1980年成为爱丁堡大学教授。他在1983年成为英国皇家学会会员,并在1984年获得卢瑟福奖。
希格斯在1991年成为英国物理学会会员,然后在1996年退休成为爱丁堡大学荣誉教授。他在2008年成为斯旺西大学荣誉教授。希格斯在爱丁堡大学期间首先对质量研究感兴趣,并逐渐发展出希格斯场理论。因为希格斯场遍布于宇宙中,某些带质量的基本粒子与希格斯场相互作用而获得其质量,而相互作用的副产品为希格斯玻色子。
希格斯机制的起始原先来自于芝加哥大学日本物理系教授南部阳一郎,他发现亚原子物理学的自发对称性破缺机制,提出南部-戈德斯通定理,认为连续对称性被自发破缺后必存在额外的零质量玻色子,称为戈德斯通玻色子。1963年,菲利普·安德森发表论文指出,类似戈德斯通玻色子的准粒子也可以在其它物理学领域找到,他猜测,对于相对论性模型,假若正确应用规范不变性理论,戈德斯通玻色子问题应该可以迎刃而解。
希格斯在1964年于苏格兰高地健行时突然获得灵感,随后在美国物理学会《物理快报》发表论文解决南部-戈德斯通定理留下的难题。希格斯在论文里提出希格斯机制理论,但是遭到《物理快报》退回。于是他将论文转投到《物理评论快报》,同时有另外五位科学家也获得相同的结论,包括弗朗索瓦·恩格勒、罗伯特·布绕特、杰拉德·古拉尼、卡尔·哈庚和汤姆·基博尔。这六位物理学者分别发表的三篇论文在《物理评论快报》50周年庆祝文献里被公认为里程碑论文。
2011年底,大型强子对撞机的两个实验分别独立在质量为125GeV附近,侦测到希格斯玻色子可能出现过的迹象。2012年7月,CERN宣布发现新玻色子,符合希格斯玻色子的质量与性质。
2013年3月14日,欧洲核子研究组织发布新闻稿表示,先前探测到的新粒子是希格斯玻色子。彼得·希格斯育有两个儿子,克里斯是电脑科学家而乔尼则是爵士音乐家。他也有两个孙子,全都住在爱丁堡。
弗朗索瓦·恩格勒出生于1932年11月6日,他是比利时理论物理学家,在粒子物理学做出重要贡献。
1964年,恩格勒和罗伯特·布绕特共同提出希格斯机制与希格斯玻色子理论。另外还有两个研究小组也在同年独立地提出类似结果,一组为杰拉德·古拉尼、卡尔·哈庚、汤姆·基博尔,另一组为彼得·希格斯。六位物理学者分别发表的三篇论文,在《物理评论快报》50周年庆祝文献里被公认为里程碑论文。
恩格勒的主要研究领域为统计力学、量子场论、宇宙学、弦理论、超引力,并且作出贡献。恩格勒、希格斯与欧洲核子研究组织共同获得2013年阿斯图里亚斯亲王科学技术奖。
因为“亚原子粒子质量的生成机制理论,促进了人类对这方面的理解,近来经欧洲核子研究组织属下大型强子对撞机的超环面仪器及紧凑μ子线圈探测器所发现基本粒子而获得证实”,恩格勒、希格斯共同获授2013年诺贝尔物理学奖。
恩格勒是第二次世界大战中犹太人大屠杀的幸存者。他出生于比利时的一个犹太家庭。在第二次世界大战时,由于德国占领了比利时,他被迫隐瞒他的犹太裔身份,躲藏在孤儿院与儿童之家,时常逃躲于各个比利时小镇,迪南、斯图蒙、普罗丰德维耶、昂内都曾经是他隐藏之处。后来,美军在昂内击退德军,他因此获得自由。
1955年,恩格勒从法语布鲁塞尔自由大学毕业,获得学士学位。毕业后,他选择留在学校继续攻读博士。1959年,得到博士学位。同年他成为康乃尔大学的副研究员,他的上司是助教授罗伯特·布绕特。他们成为好朋友与密切工作伙伴。1960年,恩格勒升迁为助教授。1961年,恩格勒返还比利时,布绕特全家也跟着一起来到法语布鲁塞尔自由大学,布绕特在那里担任正教授。1964年,恩格勒擢升为正教授。1980年,布绕特与恩格勒共同领导理论物理组。1998年,恩格勒成为荣誉退休教授。
1984年,特拉维夫大学物理与天文系礼聘恩格勒教授为“萨克勒特约教授”。2004年,蒙斯-埃诺大学授予布绕特荣誉博士。2005年,荷语布鲁塞尔自由大学(Vrije Universiteit Brussel)颁赠布绕特荣誉博士。2006年,被选为索尔维研究院(Solvay Institute)荣誉会员。2011年,他荣膺美国查普曼大学量子研究学院的“卓越访问教授”。2014年,华东师范大学礼聘恩格勒教授为“荣誉教授”。
1964年6月,布绕特团队发表了三页论文,他们指出,假定在量子真空(quantum vacuum)里标量场的振幅不等于零,则会引起自发对称性破缺,从而促使某些规范玻色子获得质量。由于电磁相互作用的光子与传递弱相互作用的W及Z玻色子都是规范玻色子,这结果是统一弱相互作用与电磁相互作用的关键。
稍后,希格斯独立发表论文概述怎样能够应用局域规范不变性来回避戈德斯通定理。不久之后,希格斯发表第二篇论文,他将上述回避方法加以延伸应用于一种非常简单模型,借以描述规范矢量场怎样获得质量。在这篇论文里,希格斯给出后来知名为“希格斯玻色子”的假定量子的方程。希格斯的1966年论文又推导出希格斯玻色子的衰变机制;只有带质量玻色子衰变,假若找到衰变的迹象,就可以证实希格斯玻色子存在。
古拉尼团队论文提到了布绕特团队与希格斯分别独立于1964年发表的论文。这论文也推导出希格斯玻色子的存在,但是希格斯的希格斯玻色子具有质量,而古拉尼团队的希格斯玻色子不具有质量,这结果令人疑问两种希格斯玻色子是否相同。在2009年与2011年发表的两篇论文中,古拉尼解释,在古拉尼团队给出的模型里,取至最低阶近似,玻色子的质量为零,但是这质量的数值没有被任何理论限制;取至较高阶,玻色子可以获得质量;另外,只有古拉尼团队论文明白写出模型里没有零质量戈德斯通玻色子,这论文是唯一对于整个希格斯机制给出完整分析的论文。
1971年,正在乌特勒支大学攻读博士的杰拉德·特·胡夫特与他的论文指导教授马丁纽斯·韦尔特曼共同将杨-米尔斯理论加以重整化。他们表示,假若按照希格斯机制来实现杨-米尔斯理论的对称性破缺,则杨-米尔斯理论可以重整化。这是二十世纪理论物理学的重要成就之一。由于这贡献,希格斯机制开始得到理所当然的重视。1999年,胡夫特与韦尔特曼因此贡献获得诺贝尔物理学奖。
1978年,布绕特、恩格勒与埃德加·冈济格(Edgard Gunzig)合作发表论文《因果宇宙》(Causal Universe),提出宇宙暴胀的机制,因此获得重力研究基金会(Gravity Research Foundation)的国际重力竞赛(International Gravity Contest)第一名。
1982年,法朗基基金会(Francqui Foundation)颁发法朗基奖(Francqui Prize)给恩格勒,“因为他对于理论了解基础相互作用物理的自发对称性破缺做出贡献。他首先表明,规范理论里的自发对称性破缺赋予规范粒子质量。因为他在其它领域,像凝聚态物理、统计力学、量子场论、宇宙学,做出贡献。因为这些成就具有原创性与基础重要性。”
1997年,欧洲物理学会颁发高能量与粒子物理学奖(High Energy and Particle Physics Prize)给布绕特、恩格勒、希格斯,鼓励他们“首先表述出一种关于带质量、带电荷矢量玻色子的自洽理论,是基本粒子电弱理论的基础”。
2004年,布绕特、恩格勒、希格斯荣获沃尔夫物理学奖,因为他们的“开创性工作,导致对于质量生成机制的深入了解,即每当局域规范对称性被非对称性地实现于亚原子粒子世界时,质量生成的机制。”
2010年,美国物理学会颁发理论粒子物理学樱井奖给他们,因为他们“详细阐述,在四维相对论性规范场论里,自发对称性破缺的性质与矢量玻色子质量的持续守恒生成。”
2013年,通过皇家命令,比利时国王阿尔贝二世册封恩格勒为男爵。恩格勒、希格斯与欧洲核子研究组织还共同获得阿斯图里亚斯亲王科学技术奖。同年,因为“亚原子粒子质量的生成机制理论,促进了人类对这方面的理解,并且最近由欧洲核子研究组织属下大型强子对撞机的超环面仪器及紧凑μ子线圈探测器发现的基本粒子证实”,恩格勒、希格斯荣获诺贝尔物理学奖。
在标准模型里,希格斯机制是一种生成质量的机制,能够使基本粒子获得质量。为什么费米子、W玻色子、Z玻色子具有质量,而光子、胶子的质量为零?希格斯机制可以解释这问题。希格斯机制应用自发对称性破缺来赋予规范玻色子质量。在所有可以赋予规范玻色子质量,而同时又遵守规范理论的可能机制中,这是最简单的机制。:378-381根据希格斯机制,希格斯场遍布于宇宙,有些基本粒子因为与希格斯场之间相互作用而获得质量。
更仔细地解释,在规范场论里,为了满足局域规范不变性,必须设定规范玻色子的质量为零。由于希格斯场的真空期望值不等于零,造成自发对称性破缺,因此规范玻色子会获得质量,同时生成一种零质量玻色子,称为戈德斯通玻色子,而希格斯玻色子则是伴随着希格斯场的粒子,是希格斯场的振动。通过选择适当的规范,戈德斯通玻色子会被抵销,只存留带质量希格斯玻色子与带质量规范矢量场。
费米子也是因为与希格斯场相互作用而获得质量,但它们获得质量的方式不同于W玻色子、Z玻色子的方式。在规范场论里,为了满足局域规范不变性,必须设定费米子的质量为零。通过汤川耦合,费米子也可以因为自发对称性破缺而获得质量。
本条目的数学表述内容需要读者了解一些量子场论的知识。所有方程都遵守爱因斯坦求合约定。按照粒子物理学惯例,采用CGS单位制为物理量的单位,并且设定光速与约化普朗克常数的数值为1。
1964年,分别有三组研究小组几乎同时地独立研究出希格斯机制,其中,一组为弗朗索瓦·恩格勒和罗伯特·布绕特,另一组为彼得·希格斯,第三组为杰拉德·古拉尼、卡尔·哈庚和汤姆·基博尔。古拉尼于1965年、希格斯于1966年又各自更进一步发表论文探讨这模型的性质。这些论文表明,假若将规范不变性理论与自发对称性破缺的概念以某种特别方式连结在一起,则规范玻色子必然会获得质量。1967年,史蒂文·温伯格与阿卜杜勒·萨拉姆首先应用希格斯机制来打破电弱对称性,并且表述希格斯机制怎样能够并入稍后成为标准模型一部分的谢尔登·格拉肖的电弱理论。
六位物理学者分别发表的三篇论文,在《物理评论快报》50周年庆祝文献里被公认为里程碑论文。2010年,他们又荣获理论粒子物理学樱井奖。
因为“亚原子粒子质量的生成机制理论,促进了人类对这方面的理解,并且最近由欧洲核子研究组织属下大型强子对撞机的超环面仪器及紧凑μ子线圈探测器发现的基本粒子证实”,恩格勒、希格斯荣获2013年诺贝尔物理学奖。
量子力学的真空与一般认知的真空不同。在量子力学里,真空并不是全无一物的空间,虚粒子会持续地随机生成或湮灭于空间的任意位置,这会造成奥妙的量子效应。将这些量子效应纳入考量之后,空间的最低能量态,是在所有能量态之中,能量最低的能量态,又称为基态或“真空态”。最低能量态的空间才是量子力学的真空。
设想某种对称群变换,只能将最低能量态变换为自己,则称最低能量态对于这种变换具有“不变性”,即最低能量态具有这种对称性。尽管一个物理系统的拉格朗日量对于某种对称群变换具有不变性,并不意味着它的最低能量态对于这种对称群变换也具有不变性。假若拉格朗日量与最低能量态都具有同样的不变性,则称这物理系统对于这种变换具有“外显的对称性”;假若只有拉格朗日量具有不变性,而最低能量态不具有不变性,则称这物理系统的对称性被自发打破,或者称这物理系统的对称性被隐藏,这现象称为“自发对称性破缺”。
墨西哥帽势能函数的电脑绘图,对于绕着帽子中心轴的旋转,帽顶具有旋转对称性,帽子谷底的任意位置不具有旋转对称性,在帽子谷底的任意位置会出现对称性破缺。假设在墨西哥帽(sombrero)的帽顶有一个圆球。这个圆球是处于旋转对称性状态,对于绕着帽子中心轴的旋转,圆球的位置不变。这圆球也处于局部最大引力势的状态,极不稳定,稍加摄动,就可以促使圆球滚落至帽子谷底的任意位置,因此降低至最小引力势位置,使得旋转对称性被打破。
尽管这圆球在帽子谷底的所有可能位置因旋转对称性而相互关联,圆球实际实现的帽子谷底位置不具有旋转对称性──对于绕着帽子中心轴的旋转,圆球的位置会改变。在帽子谷底有无穷多个不同、简并的最低能量态,都具有同样的最低能量。对于绕着帽子中心轴的旋转,会将圆球所处的最低能量态变换至另一个不同的最低能量态,除非旋转角度为360°的整数倍数,所以,圆球的最低能量态对于旋转变换不具有不变性,即不具有旋转对称性。总结,这物理系统的拉格朗日量具有旋转对称性,但最低能量态不具有旋转对称性,因此出现自发对称性破缺现象。。。
Jumbo Huang Notes: In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property 'mass' for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W−, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) that permeates all space to the Standard Model. Below some extremely high temperature,
the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it interacts with to have mass. In the Standard Model, the phrase 'Higgs mechanism' refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature.
The mechanism was proposed in 1962 by Philip Warren Anderson, following work in the late 1950s on symmetry breaking in superconductivity and a 1960 paper by Yoichiro Nambu that discussed its application within particle physics.
A theory able to finally explain mass generation without 'breaking' gauge theory was published almost simultaneously by three independent groups in 1964: by Robert Brout and François Englert; by Peter Higgs; and by Gerald Guralnik, C. R. Hagen, and Tom Kibble. The Higgs mechanism is therefore also called the Brout–Englert–Higgs mechanism, or Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism, Anderson–Higgs mechanism, Anderson–Higgs–Kibble mechanism, Higgs–Kibble mechanism by Abdus Salam and ABEGHHK'tH mechanism (for Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble, and 't Hooft) by Peter Higgs. The Higgs mechanism in electrodynamics was also discovered independently by Eberly and Reiss in reverse as the 'gauge' Dirac field mass gain due to the artificially displaced electromagnetic field as a Higgs field.
François, Baron Englert (French: ; born 6 November 1932) is a Belgian theoretical physicist and 2013 Nobel prize laureate.