讨论:男性因素不育
男性不育翻译:塔拉(辽宁丹东中心医院)审校:王若光(若光医学研究中心)文献提供:谭灏文(安吉康尔科技(深圳)科技有限公司)
据估计,全球8-12%的夫妇患有不孕症,约50%的夫妇中男性因素是主要原因或促成因素。造成男性因素不育的原因多种多样,但可能与先天性、后天性或特发性因素有关,这些因素会损害精子产生。许多健康状况都会影响男性生育能力,这就强调了需要对患者进行全面评估,以确定可治疗或可逆的生活方式因素或医疗状况。尽管精液分析仍然是评估男性不育的基石,为调查精子的质量和功能,改善诊断和管理,先进的诊断测试已经被开发出来。辅助生殖技术的使用也大大提高了不育夫妇生亲生子女的能力。本次研讨会旨在全面概述男性不育患者的评估和管理,以及目前的争议和未来的努力。简介世界卫生组织将不孕不育定义为在至少12个月的正常、无保护的性行为后不能怀孕[1]。不孕不育是世界范围内的一个主要健康问题,估计影响到8%-12%的育龄夫妇[2]。一项全球疾病负担调查报告称,1990至2017年间,不孕不育的年龄患病率在妇女中每年增加0.370%,在男性中增加0.291%[3]。不孕不育造成巨大的心理和社会痛苦[4.5],并给患者和医疗保健系统带来相当大的经济负担[6]。在一项对384419名丹麦男性进行的前瞻性研究中,Glazer和他的同事[7]们报告说,患有男性因素不育症的男性比有生育能力的男性死亡风险更高。Ventimiglia和他的同事[8]表明,男性生殖健康受损(包括较差的精液参数和较低的睾酮水平)与较高的Charlson合并症指数有关,Charlson合并症指数与一般健康状况下降的代表[9]。严重的男性不育症也与更高的癌症发病率有关[10]。因此,早期发现男性低生育能力,并识别和纠正不仅能影响生育能力,而且也能影响男性总体健康和良好的医疗状况提供了机会[11]。 越来越多的证据表明,怀孕时的父亲健康可以通过表观遗传修饰的跨代传递,影响后代的代谢健康和生殖潜力。一项针对744名男性不育症患者的研究显示,在符合糖尿病前期标准的男性中,15.4%的人患性腺功能减退、精子DNA碎片化程度较高以及非梗阻性无精子症的风险增加[14]。少精子症男性比正常精子症男性更有可能出现代谢综合征[15]。因此,重要的是要超越精液分析,将男性不育视为一种与新陈代谢受损相关并促进代谢状态的疾病。检索策略和选择标准应用计算机检索Scopus和PubMed关于男性不育的相关文章,检索词为“男性不育症”,并结合“流行病学”、“病因学”、“病理生理学”、“调查”、“无精子症”、“少弱精子症”、“弱精子症”、“精索静脉曲张”、“遗传异常”、“隐睾症”、“睾丸癌”、“梗阻”等词进行检索,检索词为“男性不育症”、“病因”、“病理生理学”、“调查”、“无精子症”、“少弱精子症”、“精索静脉曲张”、“遗传异常”、“隐睾症”、“睾丸癌”、“梗阻”。“活性氧”、“基因检测”、“成像”、“管理”、“治疗”、“抗氧化疗法”、“精索静脉曲张切除术”、“ART”或“组学”。我们选择了大多数发表于过去5年的文章,并高度引用了较老的出版物。我们还回顾了检索到的文章的参考列表,以及最近5年内发表的、在最初搜索中没有检索到的讨论男性不育症的精选文章。引用高度引用的评论和书籍章节,为读者提供超出本研讨会所能容纳的更多信息和参考。在在20%-30%的病例中,不孕不育的原因完全是男性造成的,另外20%的病例中男性原因也起到了推波助澜的作用[16.17]。1992年,Carlsen和他的同事进行的一项大型荟萃分析证实,精子数量在60年间下降了50%[18]。随后,众多研究显示全球精子数量也出现了类似的下降[19.20],尽管一些研究对这一说法提出了异议[21.22]。Levine和他的同事们的一项系统综述[23]报告,1973年至2011年间精子数量下降了50-60%。 男性不育症的原因很多,但在大多数情况下人们对此知之甚少[24-26]。虽然有各种诊断方法可用,但它们的解释并不精确,而且往往具有主观性[27]。胞质内精子注射使精液质量非常差的妊娠成为可能,例如,使用手术获取的睾丸精子治疗无精子症[28]。使用令人兴奋的干细胞和体外精子成熟的新疗法仍在试验阶段。本次研讨会旨在回顾我们目前对这些问题的理解,并提供实践指导方针,以便对不育症的男性进行个性化和优化管理。病因专题1:男性不育的原因和危险因素先天性因素无精症先天性输精管缺如隐睾Y染色体微缺失染色体或遗传异常Klinefelter综合征及其变异(47,XXY;46,XY/47,XXY嵌合体)Kallmann综合征罗伯逊易位轻度雄激素不敏感综合征遗传内分泌疾病先天性梗阻获得性因素精索静脉曲张睾丸外伤睾丸扭转生殖细胞肿瘤获得性性腺激素减退复发性泌尿生殖道感染(前列腺炎、前列腺囊炎)炎症后条件(附睾炎、流行性腮腺炎、睾丸炎)泌尿生殖道梗阻外源性因素(如化疗,药物,放疗,发热)全身性疾病(如肝硬化、肾功能衰竭)抗精子抗体可构成睾丸血管化的手术性功能障碍(勃起或射精功能障碍)特发性危险因素吸烟酗酒娱乐药物肥胖心理压力高龄父亲饮食因素环境或职业接触毒素多种原因和危险因素导致男性不育发病率上升[29-30],可分为先天性、获得性和特发性(专题1)。已知的男性不育的主要遗传原因是先天性双侧输精管缺如并伴有囊性纤维化基因突变,Kallmann综合征[31],染色体异常导致睾丸功能恶化,以及Y染色体微缺失导致孤立的生精缺陷。在获得性因素中,精索静脉曲张是男性不育最常见和可纠正的原因,患病率为40%[30.32-34]。约30-50%的男性不育病例是特发性的,没有可明显的病因或导致女性不育的原因[35.36]。男性氧化应激不育涉及精液特性和氧化应激的改变,影响约3700万男性特发性不孕症[37]。环境或职业暴露于有毒化学物质[38]和各种生活方式因素(如吸烟[39.40],饮酒[41]、娱乐吸毒[42-44]、肥胖[45.46]、以及心理压力都是导致男性不育的潜在危险因素。评估建议对规律且无保护性行为至少12个月后没有自然怀孕的夫妇进行不孕不育评估和治疗,对于女性伴侣年龄超过35岁的夫妇[49.50],建议在6个月后进行不孕不育评估和治疗。12个月前的评估和治疗可以根据病史和体检来考虑,对未来生育能力有顾虑的男性也可以进行评估。美国生殖医学协会(ASRM)和欧洲泌尿外科协会(EAU)都建议进行包括生殖史和至少一次精液分析在内的初步评估[30.49],美国泌尿学会(AUA)坚持行两次精液分析[50]。如果最初的评估结果显示异常,建议转诊到生殖专家进行全面的评估,包括体检和获得完整的病史。根据结果,可能会推荐进一步的男科评估和程序。病史专题2:病史在评估男性不育症方面的重要属性不孕史不孕持续时间以前的怀孕和结局(原发性vs继发性不孕症)伴侣生育史以前的生育调查和治疗性史性欲勃起功能障碍射精功能障碍润滑剂类型性交的频率和时间性传播疾病病史隐睾症青春期时间嗅觉缺失睾丸扭转史睾丸外伤史糖尿病神经系统疾病(脊髓损伤,多发性硬化症)感染(泌尿系统感染、附睾炎或前列腺炎肺结核、腮腺炎或睾丸炎、最近的发热病)肾病癌症手术史睾丸固定术腹膜后或盆腔手术疝修补术输精管切除术膀胱颈或前列腺手术 性激素暴露药物(内分泌调节剂、抗高血压药,抗生素、抗精神病药)环境(杀虫剂、重金属)化疗或放疗生活方式(肥胖、吸烟、吸烟、娱乐性毒品,合成代谢类固醇)家族史不孕囊性纤维化雄激素受体缺乏症男性不育症的成功诊断可能具有挑战性,因为受孕过程涉及多个器官,需要对两个人进行评估。评估不孕症的第一步是获得完整的病史(专题2)。不孕症可分为原发性不孕症(即无生育史)或继发性不孕症(即既往有生育史,目前不育) [1]。虽然这种区分可以缩小鉴别诊断,但被归类为原发性或继发性不孕症的男性应该以同样的方式进行评估[50]。各种儿童疾病(如隐睾症、青春期后腮腺炎、睾丸扭转或创伤)可导致睾丸萎缩或精液质量下降[51-53]。男性泌尿生殖道感染(前列腺炎、尿道炎、附睾炎和睾丸炎)可能导致男性不育[30]。在一项对4000多名不育症男性的研究中,男性泌尿生殖道感染的患病率高达35%[54]。一项对1689名男性的横断面研究显示,20%的原发不育症男性有无症状的精液感染,这与精子密度受损有关[55]。前列腺炎是由大肠杆菌引起的一种常见的泌尿生殖系统疾病,它可以对精子的各种参数产生有害影响[56]。在35岁以下的性活跃男性中,沙眼衣原体和淋球菌是引起附睾炎的最常见病原体。大肠杆菌是35岁以上男性不育症的主要病原体。虽然不建议对急性附睾炎或前列腺炎患者进行精液分析,但慢性附睾炎或前列腺炎患者可能出现白细胞精子症(>1×10⁶白细胞/毫升),这是一种炎症标志[30],可以通过精液中的过氧化物酶检测来确认[57]。 生活方式因素,如吸烟、饮酒、娱乐性吸毒(如可卡因、阿片类毒品、大麻和合成代谢类固醇)以及肥胖也与男性不育相关[40-42]。一项涉及20项研究中5865名男性的大型荟萃分析显示,中度和重度吸烟者的精液质量恶化[40]。同样,一项对15项横断面研究的荟萃分析揭示了饮酒与精子参数之间的负相关[41]。大麻是最常用的娱乐药物,通过抑制下丘脑-垂体-性腺轴、精子产生和精子功能,对男性生育能力产生负面影响[58]。随着全球肥胖率的持续上升,肥胖和男性不育之间的关系已经得到了广泛的研究[12]。肥胖引起的内分泌改变导致睾酮外周转化为雌激素,这与精子浓度降低有关[59]。在肥胖症的亚群中,代谢性不健康肥胖(即伴有代谢异常,如糖尿病、高血压、血脂异常、胰岛素抵抗)被认为是勃起功能障碍的危险因素,而男性勃起功能障碍和代谢性健康肥胖症(即没有代谢和心血管疾病的证据)的组合代表着未来不良代谢后果的早期标志[60]。 夫妇的性行为,包括性交的时间、勃起和射精功能,都应该进行评估。应使用排卵跟踪方法,以确保夫妇有效地计时性交。建议在排卵前后每48小时进行一次性交,以最大限度地增加受精的机会[61]。影响不孕不育男性的最常见的性功能障碍是性欲低下和性满足缺失(快感、积极感觉和性高潮) [62]。六分之一的不育症患者有勃起功能障碍或早泄,或两者同时存在[63]。
数据摘自世卫组织手册。ND=未定义。*可能基于麦克劳德的研究73。可育人口的†平均值。‡任意值。§值未定义,但严格的标准和体外受精数据建议截止值为14%。表:1980年至2010年世界卫生组织《检验实验室手册》前五版精液参数正常值的演变情况,以及处理人类精液和精子-宫颈粘液的相互作用。性功能障碍和男性不育的心理影响可能是成功生育的重要障碍,应该在临床评估中进行筛查。此外,许多夫妇使用阴道润滑剂,但这些润滑剂可能会杀死精子[64.65]。植物油、生蛋清和有利于生育的润滑剂(如美国华盛顿州斯波坎市的Pre-Seed、ING Fertility)的杀精效果最小,但夫妇仍应意识到适量使用这些润滑剂[66-68]。精液分析世界卫生组织建议将常规精液分析作为评估男性生育潜力的第一步。世界卫组织《人类精液和精子-宫颈粘液相互作用检验和处理实验室手册》自1980[69-72]年出版,最新的手册于2010年出版[57]。精液参数的推荐临界值多年来发生了巨大变化(表),但与精液质量相关的命名法仍未改变(专题3)。世界卫生组织手册最新版本[57]中描述的参考下限是通过对来自世界各地的1953名有生育能力的男子精液参数的统计分析得出的[54]。然而,这些参考限值被批评为没有考虑女性因素,个体间存在高度生物学差异,以及缺乏具有代表性的种族群体的数据[75-77]。因此,标准的精液分析在确定男性生育潜力或预测生殖成功方面的准确性有限。事实上,精液样本使用世界卫生组织2010年参考值来解释精液分析被认为是正常的,如果使用1999年的手册就会被认为是异常的[78]。Ombelet和他的同事使用受试者操作特性曲线分析来确定单个精子参数和组合精子参数的诊断潜力和临界值[79]。他们的前瞻性研究显示,单个精子参数对于区分生育能力强的男性和低生育能力的男性几乎没有临床价值,并表明使用多种精子参数组合来预测男性的生育状况是很重要的[79]。标准精液分析的另一个问题是,并不是所有的实验室都严格遵守世界卫组织的手册方法。在美国,只有不到60%的实验室符合世界卫生组织的手册指南,在英国,只有不到5%的实验室符合世界卫生组织的手册指南[80-81]。至关重要的是,所有实验室都要严格遵守世界卫生组织手册指南,以提供可靠和可比较的结果。已经引进了几个半自动和全自动计算机辅助精子分析系统。尽管计算机辅助精子分析系统在准确评估精子形态方面存在缺陷[82.83],但在许多严格遵守质量控制协议以准确量化精液参数的男科学和体外受精诊所中,计算机辅助精子分析系统被广泛使用[84]。系统比如台中市邦瑞生物公司,台湾)采用人工智能简化精液分析。Agarwal和他的同事对精液分析的前瞻性研究结果表明[85],该设备是一种可靠的诊断工具,提供了世界卫生组织第五版指南定义的临床可接受的结果。在家收集精液样本是精液分析的另一个进步[86]。支持在家中测试精子的技术为那些在陌生环境中提供精液样本感到不舒服的男性提供了一个潜在的解决方案[87.88]。家庭精子检测系统主要是基于抗体反应,微流体学,或智能手机技术。这些测定精子浓度的仪器的准确度在95%到98%之间,这使得它们成为一种实用和经济的方法来进行男性不育的初步筛查[89]。体格检查体格检查是评估男性不育症的一个关键部分,应该包括身体状况、第二性征和生殖器的评估。患有内分泌疾病的患者(例如,低血清睾酮、Klinefelter综合征、高催乳素血症)。可能会出现生殖腺发育不全的特征、体毛减少(与Tanner V期相比)、肥胖或女性乳房发育症[90.91]。生殖器检查应该从阴茎开始,仔细评估阴茎弯曲、斑块、尿道外翻或尿道下裂,所有这些都会损害精液在阴道穹窿的沉积。应该检查睾丸的存在、大小和一致性。睾丸大小应使用Prader睾丸计或卡尺(正常体积为20毫升或4×3厘米)进行评估[92]。当患者的身体习性或阴囊解剖(鞘膜积水、附睾扩张或腹股沟睾丸)可能使Prader睾丸仪测量睾丸不可靠时,阴囊超声检查是有用的[93]。应该排除睾丸肿块,因为有不育症的男性患睾丸肿瘤的风险更高[94]。应该触诊附睾,以评估是否有可能提示远端梗阻的增大。附睾发育不良伴有单侧或双侧未触及的输精管,与血管发育不全相一致,也可能与遗传或肾脏异常有关。精索应该在仰卧和站立位置进行评估,以便发现精索静脉曲张。精索静脉曲张按大小分级:1级仅通过Valsalva动作可触及,2级可在没有Valsalva动作的情况下触及,3级静脉曲张可见[95]。虽然不育的年轻男性不常规进行直肠指检,但射精量低的男性可以进行直肠指诊。应该评估前列腺的大小和一致性。中线囊肿或突出的精囊可能表明射精管阻塞[92]。生殖内分泌评估专题4:男性不育患者内分泌激素评估的临床解释性腺功能减退症卵泡刺激素、黄体生成素和睾酮浓度降低睾丸功能衰竭(少弱精子症或非梗阻性无精子症)卵泡刺激素和黄体生成素浓度升高,睾酮浓度降低或正常无定论:精子发生正常或有缺陷精子发生正常浓度的促卵泡激素,黄体生成激素和睾酮高催乳素血症催乳素浓度升高,睾酮浓度正常或降低生殖内分泌激素评估是治疗男性不育的重要工具。许多临床医生认为激素评估是对每一位男性不育患者进行常规检查的一部分[96],尽管国际社会建议限制对特定的患者群体使用激素,包括精子浓度低于10×10⁶/mL或性功能受损的男性,或者怀疑有内分泌疾病的患者[49.50]。推荐的基础激素评估应包括卵泡刺激素和总睾酮的分析(专题4)。如果发现总睾酮浓度较低,建议进行更彻底的内分泌评估。这一过程包括复查总睾酮和增加黄体生成素测定以鉴别原发性和继发性性腺功能减退。在这种情况下,催乳素分析也被推荐[49.50]。ASRM指南用于男性不育症激素评估的有效性在预测性腺功能减退方面受到了挑战[97]。Ventimiglia及其同事[97]的一项回顾性研究显示,该指南的预测价值较低,总体准确率为58%,敏感度为75%,特异度为39%。对于睾酮浓度的下限没有普遍的共识。ASRM采用小于300 ng/dL作为诊断性腺功能减退的临界值,EAU建议230 ng/dL(8nmol/L) [98.99]为诊断性腺功能减退的临界值。在性激素结合球蛋白升高的情况下(例如,75岁以上的男性、甲状腺疾病或糖尿病),仅测量总睾酮浓度是不够的。在这种情况下,建议测量游离睾酮。尽管反向平衡透析是测量游离睾酮的黄金标准,但它价格昂贵,技术上具有挑战性。使用计算出的游离睾酮来评估男性性腺功能减退可能是一种更准确的临床评估方法[99.100]。虽然催乳素在女性生育中的作用已经确定,但它在男性不育症中的作用尚不清楚,尽管轻度升高并不重要。严重的高催乳素血症可能与总睾酮浓度降低有关,从而影响精子发生和男性的性功能[101]。高催乳素血症在40%的病例中是由催乳素瘤引起的[102]。卵泡刺激素通常与精子发生呈负相关,因此在精原细胞缺失或减少的病例中回看到卵泡刺激素会升高[103.104]。然而,在某些精母细胞或精子细胞水平的生精停止病例中,卵泡刺激素、黄体生成素和睾酮的浓度可能是正常的,这限制了内分泌评估在非梗阻性无精子症患者中的预测价值。基因检测约15%的男性不育与遗传异常有关[105]。最近对男性不育基因的系统回顾和临床有效性评估显示,总共有78个基因与92个男性不育表型有关[106]。已经发现了几个与精子发生有关的基因和基因突变[26.107]。有遗传异常的男性通常表现为精子发生缺陷,导致严重的少精子症或无精子症,并增加非整倍体[108]。胚胎中的基因突变可能会导致反复的胞浆内单精子注射失败,反复流产,或者父系遗传缺陷的垂直传递。因此,在卵泡胞浆内单精子注射之前,识别基因缺陷对于诊断和正确的咨询至关重要。基因缺陷的垂直传播可以通过植入前的基因检测和移植基因健康的胚胎来预防[109]。基因检测对于预测取精成功也很重要[109]。核型分析(也称为染色体分析)是检测染色体数目缺陷或结构缺陷。核型异常是最常见的遗传缺陷类型,在无精子症中患病率为12-15%,在严重少精子症中为5%,在正常精液中不到1%[110-112]。最常见的核型缺陷是Klinefelter综合征(又称47,XXY),其次是易位、倒位和缺失。不同的专业协会一致建议对无精子症或严重少精子症(精子数<5×10⁶/mL)的男性进行核型分析[113-115]。然而,EAU将他们的指南建议扩展到包括精子数低于10×10~6/ml的男性[30.35]。EAU还建议,如果有反复自然流产、畸形或智力残疾的家族病史[30.35],无论精子浓度如何,都要进行核型分析[30]。这一建议[35]在对1168名男性的队列研究中得到了回顾性验证,研究发现,建议的阈值具有中等的敏感性(80%),但特异性(37%)和区分度(59%)较低[116]。因此,主要根据精子计数的EAU指南的使用可能导致不必要的核型分析,核型分析是一项昂贵而费力的检测。Y染色体微缺失分析适用于精子数低于5×10⁶/ml的无精子症或少精子症患者[117]。Kohn和他的同事的荟萃分析显示,大多数Y染色体微缺失发生在精子数量低于1×10⁶/mL[118]的男性中。最新的EAU指南建议,如果精子浓度低于5×10⁶/mL,则进行Y染色体微缺失检测,并强制对精子浓度低于1×10⁶/ml的Y染色体微缺失进行检测[30]。Y染色体微缺失会影响Y染色体长臂上的无精症因子a、b或c。虽然无精子症c因子缺失的男性可以从睾丸中提取精子,但a或b因子缺失的无精子症患者预后非常差,在这种情况下不建议提取精子。重要的是,Y染色体微缺失可能会遗传给男性后代,因此建议在胞浆内精子注射之对夫妇进行专业的咨询[119.120]。大多数囊性纤维化患者先天性双侧输精管缺失,大约三分之二患有这种疾病的男性有CFTR突变,没有任何其他囊性纤维化表现[121.122]。对于输精管结构异常的男性,建议对双方进行CFTR突变检测,其中包含最少的公共点突变和5T等位基因[30]。影像检查在某些情况下,对男性不育症的全面评估常需要涉及影像学方法。阴囊超声检查因其无创性、安全性和低成本而成为首选的影像检查手段。它提供了有关睾丸大小和体积、睾丸回声的详细信息,血流、精索静脉曲张和附睾解剖。阴囊超声检查不适用于亚临床精索静脉曲张的诊断,体检结果正常的男性可以避免[123]超声检查。怀疑近端生殖道梗阻的患者(根据病史、体检和精液分析)需要经直肠超声检查精囊扩张、前列腺中线囊肿和射精管扩张[93.124]。经直肠超声可以与精囊抽吸结合使用,以更准确地诊断射精管梗阻[124]。如果需要对泌尿生殖道进行更详细的成像,可以做MRI。对于不育、性腺功能低下和催乳素升高的男性,头颅MRI可以诊断出垂体病变(最常见的是催乳素瘤),催乳素瘤是高催乳素血症和性腺功能低下的潜在原因[125]。输精管造影术是一种侵入性成像手段[126],用于确定输精管或射精管的通畅性或梗阻情况,通常仅作为最终重建手术的一部分进行。在许多情况下,仅凭体检就能让男性不育专家作出诊断,但上述影像学方法可用于未确诊病例,或在重建显微外科手术中使用[92]。精子功能检测专题5:精子DNA片段测试的临床适应症临床精索静脉曲张对于常规精液参数正常的2级或3级精索静脉曲张患者,建议进行精子DNA片段检测建议对1级患者进行精子DNA碎片检测对于精液常规参数有临界值或异常的1级精索静脉曲张患者,建议进行精子DNA片段检测不明原因不孕或宫内受精失败或反复妊娠损失对于不孕和反复妊娠丢失的夫妇,或在子宫内授精之前,应进行精子DNA碎片检测早期体外受精或卵胞浆内单精子注射可能是不孕症和复发性流产或宫内受精失败夫妇的另一种治疗方法体外受精失败,或卵胞浆内精子注射失败,或两者都有精子DNA碎片测试适用于反复失败的辅助生殖患者对于少精子症、精子DNA碎片化程度高和反复发生体外受精失败的男性,使用睾丸精子而不是射精精子可能是有益的。临界异常(或正常)精液参数与危险因素精子DNA片段化检测应提供给生活方式可改变的男性不育危险因素患者地评传统的精液参数不能检测出与精子功能相关的缺陷[127],所以精子功能测试已经被开发出来以加强精液分析(图1)。在体外受精和卵胞浆内单精子注射出现后,精子功能测试的临床重要性开始显现[129-131]。在传统的体外受精中,精子-透明带相互作用缺陷是受精失败的主要原因。然而,在当前的胞浆内单精子注射时代,半透明带或顶体功能检测不再用于临床实践,因为胞质内单精子注射绕过了精子的穿透能力。因此,人们更加重视用精子DNA片段化检测来评估精子染色质的质量[132-134]。精子DNA片段分析可能比传统的精液参数更全面地评估总体生育状况[135]。
图1:男性不育的实验室评估标准精液分析包括宏观和微观参数分析。先进的精子功能测试包括使用不同的技术测定活性氧、精子DNA碎片、顶体反应和MMP。FITC-PSA=异硫氰酸荧光素标记的豌豆凝集素.MiOXSYS=男性不孕症氧化系统。MMP=线粒体膜potential.ORP=氧化-还原潜力。ROS=活性氧。SCD=精子染色质分散试验。精子染色质结构分析。末端脱氧核苷酸转移酶介导的dUTP缺口末端标记。改编自阿加瓦尔及其同事【128】,经韩国性医学和男科学会许可。目前,末端脱氧核苷酸转移酶介导的dUTP缺口末端标记法、精子染色质结构分析,精子染色质分散分析是目前最常用的精子DNA片段分析方法之一[136]。尽管检测方案和截止值大大提高了精子DNA片段检测的精确度,减少了变话,但缺乏严格的标准化和明确的阈值,这一方法的广泛应用受到了阻碍[137]。因此,尽管新出现的证据支持精子DNA碎片化在生殖结果中的作用(无论是自然的还是通过辅助生殖技术) [49], AUA或ASRM不推荐常规使用精子DNA片段检测[30.49.50]。2017年,一份关于临床实践指南的出版物综合了关于精子DNA片段测试的现有数据,并在四种具体的临床情况下[138](专题5)提出了建议。EAU指南建议对反复妊娠丢失的夫妇或不明原因不育症的男性进行精子DNA片段检测[30]。精子染色质结构分析显示,DNA碎片指数超过30%与自然受孕或宫内受精妊娠的发生率较低有关[138]。考虑到精子DNA碎片和活性氧之间的密切和潜在的因果关系,测量精液氧化应激可能是评估精子功能的另一种手段。过量的活性氧物种,如果不被抗氧化剂平衡,会导致氧化应激,导致蛋白质、脂质和DNA损伤[139.140]。用化学发光法或荧光法直接测定精液中的活性氧对男性生育潜力的评估有一定的预测价值[141-143],其临界值为每毫升小于102.2RLU/s/10⁶精子,以区分有生育能力的男性和不育的男性[144]。精液氧化还原电位是一个新的概念,用来测量精液样本中的整体氧化应激,这是一个快速而简单的试验[145]。在一项多中心研究中报告了氧化还原电位测定的潜在临床价值,该研究确定了每毫升1.34 mV/10⁶精子的临界值,以区分精液参数正常和异常的男性[146]。虽然精液氧化应激可以通过各种检测方法来确定,但EAU指南建议,活性氧的常规检测应保持实验性,直到这些测试在随机对照试验(RCTs)中得到验证[30]。管理无精症无精子症的原因可分为睾丸前、睾丸或睾丸后。无精子症的睾丸前病因包括涉及下丘脑-垂体-性腺轴的内分泌异常。虽然先天性和获得性性腺激素低减是罕见的,但它是为数不多的男性不育的医学原因之一。常见的显著原因包括Kallmann综合征和外源性雄激素过多。在无精子症男性的激素评估过程中,促性腺激素减退症的特征是血清卵泡刺激素和睾酮浓度低。临床上常用人绒毛膜促性腺激素与更年期促性腺激素合用,分别替代黄体生成素和促卵泡激素,诱导性腺功能减退症患者生育。据报道,16-57%患有先天性性腺机能减退症的男性在治疗后成功怀孕[147]。一旦排除了青春期前的原因,无精子症男性被归类为梗阻性无精子症或非梗阻性无精子症(图2)。睾丸活检不再被推荐用于诊断。一般情况下,卵泡刺激素的临界值为7.6mIU/mL,睾丸长轴为4.6 cm,用于区分梗阻性无精子症和非梗阻性无精子症[148]。梗阻性无精子症患者有几种选择,包括取附睾或睾丸精子进行胞浆内单精子注射或手术重建[149]。原发性睾丸功能衰竭导致的生精功能障碍是非梗阻性无精子症最常见的原因。虽然从梗阻性无精子症患者中成功获取睾丸精子的可能性很高,但非梗阻性无精子症患者的成功率要低得多[150-152]。尽管非梗阻性无精子症患者的精子产量往往不足以达到射精,但睾丸活检发现异质性斑块状生精,且60%的非梗阻性无精子症患者睾丸内可见精子,这为非梗阻性无精子症的治疗提供了取精的理论基础[150-151]。虽然睾丸精子抽吸术可以使用麻醉部位经皮进行,但精子回收率低导致该手术不常见,除非与睾丸定位结合使用[153]。根据对15个病例对照研究数据的荟萃分析,显微切割睾丸精子提取可能比传统睾丸精子提取(手术取精52%对35%)更有效[154]。重要的是,显微切割睾丸精子提取术可获得大量的精子,睾丸组织切除较少,并发症发生率最低[151.154]。然而,随后的荟萃分析显示,在非梗阻性无精子症患者中,显微切割和常规睾丸精子提取在取精或活产结局方面没有差异[152]。在Klinefelter综合征患者中也发现了类似的结果,他们在常规或睾丸显微切割取精后比较了手术取精和活产结局[155]。需要进一步设计良好的随机对照试验来阐明哪种技术更有效。在指导患者使用某种特定的精子提取技术之前,应该考虑几个变量(例如,手术技巧、睾丸组织学、费用和并发症风险),因为没有明确的建议使用哪种技术[30]。精索静脉曲张修补术在非梗阻性无精子症患者中的作用一直存在相当大的争论,因为手术取精率和胞浆内单精子注射的结果尚未确定[156]。尽管生殖医学取得了进展,但在约50%的非梗阻性无精子症男性中,取精不成功,这使得这些男性只能选择捐赠者精子受精或领养。
图2:无精子症的分类FSH--促卵泡激素。ICSI卵胞浆内单精子注射。精索静脉曲张精索静脉曲张是盘状神经丛静脉扩张,从睾丸排出血液,在15%的健康男性和25%精液分析异常的男性中存在[30]。精索静脉曲张影响睾丸功能的机制可能是多因素的,但最普遍接受的理论包括盘状神经丛中的静脉血液相对停滞,这会提高睾丸温度,导致活性氧水平升高[157]。精索静脉曲张修补术的适应证和手术方式一直存在争议。在临床精索静脉曲张和精液分析异常的男性中,精索静脉曲张修补术可以显著改善精液参数[30.33.158]。目前的指南不建议精液分析正常的不育症患者或亚临床精索静脉曲张患者行精索静脉曲张切除术。然而,精索静脉曲张修补术推荐给有临床精索静脉曲张、精液参数异常和原因不明的不育症的男性,其女性伴侣的激素水平健康且卵子计数良好[30]。一项系统的回顾和荟萃分析得出结论,即使精液参数没有改善,精索静脉曲张修补术可以改善辅助生殖技术手术后的活产结局[159]。手术修复是精索静脉曲张的主要治疗方法,经皮放射栓塞术是可行的替代方法[160]。精索静脉曲张切除术可以通过后腹膜、腹腔镜或机器人辅助的腹腔镜、显微外科腹股沟或腹股沟下入路完成[161]。不同手术方式的成功率没有显著差异,但显微外科腹股沟下精索静脉曲张切除术被认为是金标准,因为与其他手术方式相比,精索静脉曲张复发(0.4%)或术后鞘膜积液(0.44%)的风险较低[30.32]。精索静脉曲张切除术可以改善精液参数,减少氧化应激,可能使夫妇免于进行昂贵的辅助生殖技术程序[32]。特发性男性不育在患有特发性不育的男性中,尽管完成了诊断调查,但仍无法确定精液参数改变的原因[35]。目前对特发性男性不育的治疗包括辅助生殖技术或经验性药物治疗,其中包括改善生活方式和激素或非激素治疗。改变生活方式(如减肥、体力活动和戒烟)是重要的非侵入性措施[30],并与改善精子参数有关[162-165]。经验性激素药物治疗的主要是选择性雌激素受体调节剂和芳香化酶抑制剂。选择性雌激素受体调节剂(特别是克罗米酚柠檬酸盐)已被用于实验室外改善精液参数,但很少有高质量的随机对照试验证明其有效性[166.167]。外源性睾酮不应用于治疗男性不育,因为它会抑制精子生成[168]。80%的男性不育症患者精液氧化还原电位升高支持了氧化应激作为男性不育原因的作用[37]。氧化应激可能是可逆的,这为治疗提供了机会。因此,口服抗氧化剂是最常用的经验性药物治疗。尽管文献中的研究存在异质性,但一项系统的综述表明,抗氧化疗法在改善男性不育症患者精液参数和减轻氧化应激方面的效果[169]。2019年Cochrane的一篇综述对6264名接受抗氧化剂联合治疗的不育症男性的61项随机对照试验进行了荟萃分析,报告了低质量的证据表明,补充抗氧化剂可以改善临床妊娠和活产的比例[170]。这项审查承认了重要的局限性,包括低质量的随机对照试验,由于随机方法报告不当,存在严重的偏差风险,未能报告临床结果(如活产、临床妊娠)、高损耗率以及由于事件数量少和总样本量少而导致的不精确性[170]。因此,在推荐最佳抗氧化剂方案之前,进一步的大规模随机对照试验报告临床相关结果是必要的。辅助生殖技术的作用辅助生殖技术的使用大大提高了不孕不育夫妇生育亲生子女的能力。在宫内受精中,在排卵期间,逐渐活动的精子从精液中分离出来,直接受精到宫腔内。对于更严重的男性因素不育症,可以使用常规的体外受精或胞浆内单精子注射。尽管这些技术取得了成功,但一些夫妇的结局仍然不佳,这可能是由于卵子或精子的质量不佳,或者两者都有。Lee和他的同事表明,使用严重少弱精子症和非梗阻性无精子症男性的精子进行胞质内单精子注射周期,在胚胎植入和临床妊娠方面比正常精子症男性的结局更差[171]。这一发现表明了父亲贡献的重要性,以及在胞浆内单精子注射之前选择最好的精子的必要性。对不孕不育夫妇的最佳管理应该包括纠正精子缺陷,即使是对接受辅助生殖技术的夫妇也是如此。使用睾丸来源的精子越来越重要,因为与射出的精子相比,睾丸精子的精子DNA碎片较少[172]。因此,睾丸精子提取-胞浆内单精子注射可用于非无精子症,精子DNA碎片化升高且之前胞浆内单精子注射周期失败的男性。然而,还需要更多的证据来支持这一常规临床实践。未来的治疗方法和挑战现代组学技术的进步促进了在基因、分子和细胞水平上诊断和治疗男性不育。 下一代测序技术,如疾病靶向测序、全外显子组和基因组测序,以及精子的表观遗传学分析,是基因测试中有前途的技术[173]。下一代测序技术已经能够识别与男性不育相关的新候选基因,如无精症[174]、少精子症[175]和特发性男性不育[107]。关于小RNA和microRNA在表观遗传调控中的作用[176]以及它们参与精子发生和附睾精子成熟的发现,扩大了目前对这些过程的理解[177-180]。精浆代谢指纹分析是另一个很有前途的研究领域[181],尤其是在特发性男性不育的病例中。2019年发表的一项研究发现,在精子正常的不育男性中,活性氧引起的精子DNA表观遗传改变和精子代谢谱与精液质量相关[182]。男性生殖蛋白质组学研究的转变揭示了几种蛋白质作为生物标志物与男性不育的各种原因有关,如氧化应激介导的精子功能障碍[183.184]、精索静脉曲张[176.185.186]、弱精子症[187.188]、球精子症[189.190]和睾丸癌[191.192]。一个主要的问题是需要确定一个独特的生物标志物与特定的条件。从战略上讲,通过开发一种对特定男性不育疾病具有高特异性的蛋白质生物标志物面板,可以实现正确的诊断。此外,在临床应用组学研究结果之前,确定合适的组学数据的适用性或它们与适当的临床验证相结合是至关重要的[193]。未来男性不育的诊断和治疗正在走向男性学与人工智能的融合,使用密集的机器学习。正在开发算法来预测哪些男性是无精子症,可能需要进行基因调查、精子检测,以及辅助生殖技术和体外受精胚胎选择的选择[194]。人工智能在男科和辅助生殖技术中的使用仍处于早期阶段,并伴随着伦理问题,因此有必要进行进一步的全面和广泛的研究[195.196]。 在过去的十年里,在男性生殖方面的研究已经看到了使用干细胞的下一代疗法的重大进展。利用胚胎干细胞、诱导多能干细胞和胶质母细胞瘤干细胞建立了不同的体外方法和器官模型[197]。方和他的同事强调了人类诱导的多能干细胞在男性不育治疗中的可能性[198]。人类诱导的多能干细胞可用于重建精子发生,并在CRISPR-Cas9基因编辑技术中用于纠正遗传性疾病。此外,人类诱导的多能干细胞源性外显体可能对接受化疗或放疗的患者恢复生精功能具有治疗意义[198]。精原干细胞具有相似的再生和自我更新特性,为男性不育的治疗开辟了新的前景[199.200]。对于接受过性腺毒性治疗的儿科患者,自体冷冻精原组织移植被认为是保存生育能力的新策略[201]。然而,在干细胞治疗用于男性不育的管理和治疗之前,必须克服一些障碍,包括伦理问题和在干细胞体外培养过程中向后代传播遗传损伤的风险。ContributorsAll authors wrote this Seminar and read and approved the final manuscript.Declarationof interests We declare no competing interests.AcknowledgmentsWe thank Joseph Terry and Mary Reagan, Center for Medical Art and Photography,Cleveland Clinic, for their assistance in preparing the figures.参考文献1. Zegers-Hochschild F, Adamson GD, Dyer S,et al. The international glossary on infertility and fertility care, 2017.Fertil Steril 2017; 108: 393–406.2. Vander Borght M, Wyns C. Fertility andinfertility: definition and epidemiology. Clin Biochem 2018; 62: 2–10.3. Sun H, Gong TT, Jiang YT, Zhang S, ZhaoYH, Wu Q J. Global, regional, and national prevalence and disability-adjustedlife-years for infertility in 195 countries and territories, 1990–2017: resultsfrom a Global Burden of Disease Study, 2017. Aging (Albany NY) 2019; 11:10952–91.4. Bak CW, Seok HH, Song SH, Kim ES, Her YS,Yoon TK. Hormonal imbalances and psychological scars left behind in infertilemen. J Androl 2012; 33: 181–89.5. 5 Slade P, O’Neill C, Simpson AJ, LashenH. The relationship between perceived stigma, disclosure patterns, support anddistress in new attendees at an infertility clinic. Hum Reprod 2007; 22:2309–17.6. Wu AK, Elliott P, Katz PP, Smith JF. Timecosts of fertility care: the hidden hardship of building a family. FertilSteril 2013; 99: 2025–30.7. Glazer CH, Eisenberg ML, Tøttenborg SS, etal. Male factor infertility and risk of death: a nationwide record-linkagestudy. Hum Reprod 2019; 34: 2266–73.8. Ventimiglia E, Capogrosso P, Boeri L, etal. Infertility as a proxy of general male health: results of a cross-sectionalsurvey. Fertil Steril 2015; 104: 48–55.9. Salonia A, Matloob R, Gallina A, et al.Are infertile men less healthy than fertile men? Results of a prospectivecase-control survey. Eur Urol 2009; 56: 1025–31.10. Hanson BM, Eisenberg ML, Hotaling JM. Maleinfertility: a biomarker of individual and familial cancer risk. Fertil Steril2018; 109: 6–19.11. Tvrda E, Agarwal A, Alkuhaimi N. Malereproductive cancers and infertility: a mutual relationship. Int J Mol Sci2015; 16: 7230–60.12. Craig JR, Jenkins TG, Carrell DT, HotalingJM. Obesity, male infertility, and the sperm epigenome. Fertil Steril 2017;107: 848–59.13. Ding GL, Liu Y, Liu ME, et al. The effectsof diabetes on male fertility and epigenetic regulation during spermatogenesis.Asian J Androl 2015; 17: 948–53.14. Boeri L, Capogrosso P, Ventimiglia E, etal. Undiagnosed prediabetes is highly prevalent in primary infertilemen—results from a cross-sectional study. BJU Int 2019; 123: 1070–77.15. Ferlin A, Garolla A, Ghezzi M, et al.Sperm count and hypogonadism as markers of general male health. Eur Urol Focus2019; published online Aug 17. https://doi.org/10.1016/j.euf.2019.08.001.16. Anderson JE, Farr SL, Jamieson DJ, WarnerL, Macaluso M. Infertility services reported by men in the United States:national survey data. Fertil Steril 2009; 91: 2466–70.17. Thonneau P, Marchand S, Tallec A, et al.Incidence and main causes of infertility in a resident population (1,850,000)of three French regions (1988–1989). Hum Reprod 1991; 6: 811–16.18. Carlsen E, Giwercman A, Keiding N,Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years.BMJ 1992; 305: 609–13.19. Swan SH, Elkin EP, Fenster L. The questionof declining sperm density revisited: an analysis of 101 studies published1934–1996. Environ Health Perspect 2000; 108: 961–66.20. Mishra P, Negi MPS, Srivastava M, Singh K,Rajender S. Decline in seminal quality in Indian men over the last 37 years.Reprod Biol Endocrinol 2018; 16: 103.21. te Velde ER, Bonde JP. Misconceptions aboutfalling sperm counts and fertility in Europe. Asian J Androl 2013; 15: 195–98.22. Ravanos K, Petousis S, Margioula-SiarkouC, et al. Declining sperm counts... or rather not? A mini review. ObstetGynecol Surv 2018; 73: 595–605.23. Levine H, Jørgensen N, Martino-Andrade A,et al. Temporal trends in sperm count: a systematic review and meta-regressionanalysis. Hum Reprod Update 2017; 23: 646–59.24. Punab M, Poolamets O, Paju P, et al.Causes of male infertility: a 9-year prospective monocentre study on 1737 patientswith reduced total sperm counts. Hum Reprod 2017; 32: 18–31.25. Tournaye H, Krausz C, Oates RD. Novelconcepts in the aetiology of male reproductive impairment. Lancet DiabetesEndocrinol 2017; 5: 544–53.26. Olesen IA, Andersson AM, Aksglaede L, etal. Clinical, genetic, biochemical, and testicular biopsy findings among 1,213men evaluated for infertility. Fertil Steril 2017; 107: 74–82.e7.27. Esteves SC. Are specialized sperm functiontests clinically useful in planning assisted reproductive technology? Int BrazJ Urol 2020; 46: 116–23.28. Ramasamy R, Lin K, Gosden LV, Rosenwaks Z,Palermo GD, Schlegel PN. High serum FSH levels in men with nonobstructiveazoospermia does not affect success of microdissection testicular spermextraction. Fertil Steril 2009; 92: 590–93.29. Krausz C. Male infertility: pathogenesisand clinical diagnosis. Best Pract Res Clin Endocrinol Metab 2011; 25: 271–85.30. Salonia A, Bettocchi C, Carvalho J, et al.EAU guidelines on sexual and reproductive health. 2020.https://uroweb.org/wp-content/uploads/EAU-Guidelines-on-Sexual-and-Reproductive-Health-2020. pdf (accessedMay 29, 2020).31. Salonia A, Rastrelli G, Hackett G, et al.Paediatric and adult-onset male hypogonadism. Nat Rev Dis Primers 2019; 5: 38.32. Practice Committee of the American,Society for Male Reproduction and Urology. Report on varicocele andinfertility: a committee opinion. Fertil Steril 2014; 102: 1556–60.33. Baazeem A, Belzile E, Ciampi A, et al.Varicocele and male factor infertility treatment: a new meta-analysis and reviewof the role of varicocele repair. Eur Urol 2011; 60: 796–808.34. Damsgaard J, Joensen UN, Carlsen E, et al.Varicocele is associated with impaired semen quality and reproductive hormonelevels: a study of 7035 healthy young men from six European countries. Eur Urol2016; 70: 1019–29.35. Jungwirth A, Diemer T, Dohle G, et al. EAUguidelines on male infertility. Eur Urol 2015.https://uroweb.org/wp-content/uploads/EAU-Guidelines-Male-Infertility-20151.pdf (accessed May 29, 2020).36. Chehab M, Madala A, Trussell JC. On-labeland off-label drugs used in the treatment of male infertility. Fertil Steril2015; 103: 595–604.37. Agarwal A, Parekh N, Panner Selvam MK, etal. Male oxidative stress infertility (MOSI): proposed terminology and clinicalpractice guidelines for management of idiopathic male infertility. World J MensHealth 2019; 37: 296–312.38. Ma Y, He X, Qi K, et al. Effects ofenvironmental contaminants on fertility and reproductive health. J Environ Sci(China) 2019; 77: 210–17.39. Taha EA, Ez-Aldin AM, Sayed SK, GhandourNM, Mostafa T. Effect of smoking on sperm vitality, DNA integrity, seminal oxidativestress, zinc in fertile men. Urology 2012; 80: 822–25.40. Sharma R, Harlev A, Agarwal A, Esteves SC.Cigarette smoking and semen quality: a new meta-analysis examining the effectof the 2010 World Health Organization laboratory methods for the examination ofhuman semen. Eur Urol 2016; 70: 635–4541. Ricci E, Al Beitawi S, Cipriani S, et al.Semen quality and alcohol intake: a systematic review and meta-analysis. ReprodBiomed Online 2017; 34: 38–47.42. Gundersen TD, Jørgensen N, Andersson AM,et al. Association between use of marijuana and male reproductive hormones andsemen quality: a study among 1,215 healthy young men. Am J Epidemiol 2015; 182:473–81.43. Bracken MB, Eskenazi B, Sachse K, McSharryJE, Hellenbrand K, Leo-Summers L. Association of cocaine use with spermconcentration, motility, and morphology. Fertil Steril 1990; 53: 315–22.44. Fronczak CM, Kim ED, Barqawi AB. Theinsults of illicit drug use on male fertility. J Androl 2012; 33: 515–28.45. Eisenberg ML, Kim S, Chen Z, Sundaram R,Schisterman EF, Buck Louis GM. The relationship between male BMI and waistcircumference on semen quality: data from the LIFE study. Hum Reprod 2014; 29:193–200.46. Gaskins AJ, Afeiche MC, Hauser R, et al.Paternal physical and sedentary activities in relation to semen quality andreproductive outcomes among couples from a fertility center. Hum Reprod 2014;29: 2575–82.47. Nargund VH. Effects of psychologicalstress on male fertility. Nat Rev Urol 2015; 12: 373–82.48. Durairajanayagam D. Lifestyle causes ofmale infertility. Arab J Urol 2018; 16: 10–20.49. Practice Committee of the American Societyfor Reproductive Medicine. Diagnostic evaluation of the infertile male: acommittee opinion. Fertil Steril 2015; 103: e18–25.50. Jarow J, Sigman M, Kolettis PN, et al. Theoptimal evaluation of the infertile male: AUA Best Practice Statement. 2010.https://www.auanet.org/documents//education/clinical-guidance/MaleInfertility-d.pdf(accessed May 29, 2020).51. Lewis JM, Kaplan WE. Anatomy andembryology of the male reproductive tract and gonadal development. In:Lipshultz LI, Howards SS, Niederberger CS, eds. Infertility in the male, 4thedn. New York: Cambridge University Press, 2009: 1–13.52. Visser AJ, Heyns CF. Testicular functionafter torsion of the spermatic cord. BJU Int 2003; 92: 200–03.53. Kasturi SS, Osterberg C, Tannir J,Brannigan RE. The effect of genital tract infection and inflammation on maleinfertility. In: Lipshultz LI, Howards SS, CS N, eds. Infertility in the male,4th edn. New York: Cambridge University Press, 2009: 295–329.54. Henkel R, Maass G, Jung A, Haidl G, SchillWB, Schuppe HC. Age-related changes in seminal polymorphonuclear elastase inmen with asymptomatic inflammation of the genital tract. Asian J Androl 2007;9: 299–304.55. Boeri L, Pederzoli F, Capogrosso P, et al.Semen infections in men with primary infertility in the real-life setting.Fertil Steril 2020; 113: 1174–82.56. Condorelli RA, Russo GI, Calogero AE,Morgia G, La Vignera S. Chronic prostatitis and its detrimental impact on spermparameters: a systematic review and meta-analysis. J Endocrinol Invest 2017;40: 1209–18.57. WHO, Department of Reproductive Health andResearch. WHO laboratory manual for the examination and processing of humansemen, 5th edn. Geneva: World Health Organization, 2010.58. Sansone A, Di Dato C, de Angelis C, et al.Smoke, alcohol and drug addiction and male fertility. Reprod Biol Endocrinol2018; 16: 3.59. Alshahrani S, Ahmed AF, Gabr AH,Abalhassan M, Ahmad G. The impact of body mass index on semen parameters ininfertile men. Andrologia 2016; 48: 1125–29.60. Rastrelli G, Lotti F, Reisman Y, Sforza A,Maggi M, Corona G. Metabolically healthy and unhealthy obesity in erectiledysfunction and male infertility. Expert Rev Endocrinol Metab 2019; 14: 321–34.61. Tur-Kaspa I, Maor Y, Levran D, Yonish M, MashiachS, Dor J. How often should infertile men have intercourse to achieveconception? Fertil Steril 1994; 62: 370–75.62. Lotti F, Maggi M. Sexual dysfunction andmale infertility. Nat Rev Urol 2018; 15: 287–307.63. McCabe MP, Sharlip ID, Lewis R, et al.Incidence and prevalence of sexual dysfunction in women and men: a consensusstatement from the Fourth International Consultation on Sexual Medicine 2015. JSex Med 2016; 13: 144–52.64. Mowat A, Newton C, Boothroyd C, Demmers K,Fleming S. The effects of vaginal lubricants on sperm function: an in vitroanalysis. J Assist Reprod Genet 2014; 31: 333–39.65. Mesen TB, Steiner AZ. Effect of vaginallubricants on natural fertility. Curr Opin Obstet Gynecol 2014; 26: 186–92.66. Goldenberg RL, White R. The effect ofvaginal lubricants on sperm motility in vitro. Fertil Steril 1975; 26: 872–73.67. Edvinsson A, Bergman P, Steen Y, NilssonS. Characteristics of donor semen and cervical mucus at the time of conception.Fertil Steril 1983; 39: 327–32.68. Agarwal A, Deepinder F, Cocuzza M, ShortRA, Evenson DP. Effect of vaginal lubricants on sperm motility and chromatinintegrity: a prospective comparative study. Fertil Steril 2008; 89: 375–79.69. WHO. WHO laboratory manual for theexamination of human semen and sperm-cervical mucus interaction, 1st edn.Cambridge: Cambridge University Press, 1980.70. WHO. WHO laboratory manual for theexamination of human semen and sperm-cervical mucus interaction, 2nd edn.Cambridge: Cambridge University Press, 1987.71. WHO. WHO laboratory manual for theexamination of human semen and sperm-cervical mucus interaction, 3rd edn.Cambridge: Cambridge University Press, 1992.72. HO. WHO laboratory manual for theexamination of human semen and sperm-cervical mucus interaction, 4th edn. Cambridge:Cambridge University Press, 1999.73. MacLeod J, Wang Y. Male fertilitypotential in terms of semen quality: a review of the past, a study of thepresent. Fertil Steril 1979; 31: 103–16.74. Cooper TG, Noonan E, von Eckardstein S, etal. World Health Organization reference values for human semen characteristics.Hum Reprod Update 2010; 16: 231–45.75. Patel AS, Leong JY, Ramasamy R. Predictionof male infertility by the World Health Organization laboratory manual forassessment of semen analysis: a systematic review. Arab J Urol 2017; 16:96–102.76. Sánchez V, Wistuba J, Mallidis C. Semenanalysis: update on clinical value, current needs and future perspectives.Reproduction 2013; 146: R249–58.77. Esteves SC. Clinical relevance of routinesemen analysis and controversies surrounding the 2010 World Health Organizationcriteria for semen examination. Int Braz J Urol 2014; 40: 443–53.78. Alshahrani S, Aldossari K, Al-Zahrani J,Gabr AH, Henkel R, Ahmad G. Interpretation of semen analysis using WHO 1999 andWHO 2010 reference values: abnormal becoming normal. Andrologia 2018; 50:e12838.79. Ombelet W, Bosmans E, Janssen M, et al.Semen parameters in a fertile versus subfertile population: a need for changein the interpretation of semen testing. Hum Reprod 1997; 12: 987–93.80. Keel BA, Stembridge TW, Pineda G, SerafyNT Sr. Lack of standardization in performance of the semen analysis amonglaboratories in the United States. Fertil Steril 2002; 78: 603–08.81. Riddell D, Pacey A, Whittington K. Lack ofcompliance by UK andrology laboratories with World Health Organizationrecommendations for sperm morphology assessment. Hum Reprod 2005; 20: 3441–45.82. Engel KM, Grunewald S, Schiller J, PaaschU. Automated semen analysis by SQA Vision versus the manual approach—aprospective double-blind study. Andrologia 2019; 51: e13149.83. Dearing C, Jayasena C, Lindsay K. Can theSperm Class Analyser (SCA) CASA-Mot system for human sperm motility analysisreduce imprecision and operator subjectivity and improve semen analysis? HumFertil (Camb) 2019; published online May 6. https://doi.org/10.1080/14647273.2019.1610581.84. Mortimer ST, van der Horst G, Mortimer D.The future of computer-aided sperm analysis. Asian J Androl 2015; 17: 545–53.85. Agarwal A, Henkel R, Huang CC, Lee MS.Automation of human semen analysis using a novel artificial intelligenceoptical microscopic technology. Andrologia 2019; 51: e13440.86. Elzanaty S, Malm J. Comparison of semenparameters in samples collected by masturbation at a clinic and at home. FertilSteril 2008; 89: 1718–22.87. Bhongade MB, Prasad S, Jiloha RC, Ray PC,Mohapatra S, Koner BC. Effect of psychological stress on fertility hormones andseminal quality in male partners of infertile couples. Andrologia 2015; 47:336–42.88. Kobori Y. Home testing for male factorinfertility: a review of current options. Fertil Steril 2019; 111: 864–70.89. Yu S, Rubin M, Geevarughese S, Pino JS,Rodriguez HF, Asghar W. Emerging technologies for home-based semen analysis.Andrology 2018; 6: 10–19.90. Sigman M. Klinefelter syndrome: how, what,and why? Fertil Steril 2012; 98: 251–52.91. Oates RD, Lamb DJ. Genetic aspects ofinfertility. In: Lipshultz LI, Howards SS, CS N, eds. Infertility in the male,4th edn. Cambridge: Cambridge University Press; 2009: 251–76. 92. Niederberger C. Clinical evaluation of themale. In: Niederberger C, ed. An introduction to male reproductive medicine.Cambridge: Cambridge University Press, 2011: 29–57.93. Lotti F, Maggi M. Ultrasound of the malegenital tract in relation to male reproductive health. Hum Reprod Update 2015;21: 56–83.94. Walsh TJ, Croughan MS, Schembri M, ChanJM, Turek PJ. Increased risk of testicular germ cell cancer among infertilemen. Arch Intern Med 2009; 169: 351–56.95. Nagler HM, Varicocele ABG. In: LipshultzLI, Howards SS, Niederberger, eds. Infertility in the male, 4th edn. Cambridge:Cambridge University Press; 2009: 331–61.96. Ring JD, Lwin AA, Köhler TS. Currentmedical management of endocrine-related male infertility. Asian J Androl 2016;18: 357–63.97. Ventimiglia E, Capogrosso P, Boeri L, etal. Validation of the American Society for Reproductive Medicine guidelines/recommendations in white European men presenting for couple’s infertility.Fertil Steril 2016; 106: 1076–1082.e1.98. Wang C, Nieschlag E, Swerdloff R, et al.Investigation, treatment and monitoring of late-onset hypogonadism in males:ISA, ISSAM, EAU, EAA and ASA recommendations. Eur J Endocrinol 2008; 159:507–14.99. Hackett G, Kirby M, Edwards D, et al.British Society for Sexual Medicine guidelines on adult testosteronedeficiency, with statements for UK practice. J Sex Med 2017; 14: 1504–23.100. Antonio L, Wu FC, O’Neill TW, et al. Lowfree testosterone is associated with hypogonadal signs and symptoms in men withnormal total testosterone. J Clin Endocrinol Metab 2016; 101: 2647–57.101. Lotti F, Corona G, Maseroli E, et al.Clinical implications of measuring prolactin levels in males of infertilecouples. Andrology 2013; 1: 764–71.102. Dabbous Z, Atkin SL. Hyperprolactinaemiain male infertility: clinical case scenarios. Arab J Urol 2017; 16: 44–52.103. Hauser R, Temple-Smith PD, Southwick GJ,de Kretser D. Fertility in cases of hypergonadotropic azoospermia. FertilSteril 1995; 63: 631–36.104. Martin-du-Pan RC, Bischof P. Increasedfollicle stimulating hormone in infertile men. Is increased plasma FSH alwaysdue to damaged germinal epithelium? Hum Reprod 1995; 10: 1940–45.105. Krausz C, Riera-Escamilla A. Genetics ofmale infertility. Nat Rev Urol 2018; 15: 369–84.106. Oud MS, Volozonoka L, Smits RM, VissersLELM, Ramos L, Veltman JA. A systematic review and standardized clinical validityassessment of male infertility genes. Hum Reprod 2019; 34: 932–41.107. Fakhro KA, Elbardisi H, Arafa M, et al.Point-of-care whole-exome sequencing of idiopathic male infertility. Genet Med2018; 20: 1365–73.108. Lipshultz LI, Lamb DJ. Risk of transmissionof genetic diseases by assisted reproduction. Nat Clin Pract Urol 2007; 4:460–61.109. Cariati F, D’Argenio V, Tomaiuolo R. Theevolving role of genetic tests in reproductive medicine. J Transl Med 2019; 17:267.110. Kumar R, Bhat A, Bamezai RN, et al. Necessityof nuclear and mitochondrial genome analysis prior to assisted reproductivetechniques/intracytoplasmic sperm injection. Indian J Biochem Biophys 2007; 44:437–42.111. Van Assche E, Bonduelle M, Tournaye H, etal. Cytogenetics of infertile men. Hum Reprod 1996; 11 (suppl 4): 1–24,discussion 25–26.112. Ravel C, Berthaut I, Bresson JL, SiffroiJP. Prevalence of chromosomal abnormalities in phenotypically normal andfertile adult males: large-scale survey of over 10,000 sperm donor karyotypes.Hum Reprod 2006; 21: 1484–89.113. Practice Committee of the American Societyfor Reproductive Medicine. Management of nonobstructive azoospermia: acommittee opinion. Fertil Steril 2018; 110: 1239–45.114. Jarvi K, Lo K, Fischer A, et al. CUAGuideline: the workup of azoospermic males. Can Urol Assoc J 2010; 4: 163–67.115. Gangel EK. AUA and ASRM producerecommendations for male infertility. American Urological Association, Inc andAmerican Society for Reproductive Medicine. Am Fam Physician 2002; 65: 2589–90.116. Ventimiglia E, Capogrosso P, Boeri L, etal. When to perform karyotype analysis in infertile men? Validation of theEuropean Association of Urology Guidelines with the proposal of a newpredictive model. Eur Urol 2016; 70: 920–23.117. Pryor JL, Kent-First M, Muallem A, et al.Microdeletions in the Y chromosome of infertile men. N Engl J Med 1997; 336:534–39.118. Kohn TP, Kohn JR, Owen RC, Coward RM. Theprevalence of Y-chromosome microdeletions in oligozoospermic men: a systematicreview and meta-analysis of European and North American studies. Eur Urol 2019;76: 626–36.119. Krausz C, Hoefsloot L, Simoni M,Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis ofY-chromosomal microdeletions: state-of-the-art 2013. Andrology 2014; 2: 5–19.120. Rives N. Y chromosome microdeletions andalterations of spermatogenesis, patient approach and genetic counseling. AnnEndocrinol (Paris) 2014; 75: 112–14.121. Kerem B, Rommens JM, Buchanan JA, et al.Identification of the cystic fibrosis gene: genetic analysis. Science 1989;245: 1073–80.122. Anguiano A, Oates RD, Amos JA, et al.Congenital bilateral absence of the vas deferens. A primarily genital form ofcystic fibrosis. JAMA 1992; 267: 1794–97.123. Male Infertility Best Practice PolicyCommittee of the American Urological Association. Report on varicocele andinfertility. Fertil Steril 2004; 82 (suppl 1): S142–45.124. Jurewicz M, Gilbert BR. Imaging andangiography in male factor infertility. Fertil Steril 2016; 105: 1432–42.125. Chanson P, Maiter D. The epidemiology,diagnosis and treatment of prolactinomas: the old and the new. Best Pract ResClin Endocrinol Metab 2019; 33: 101290.126. Ammar T, Sidhu PS, Wilkins CJ. Maleinfertility: the role of imaging in diagnosis and management. Br J Radiol 2012;85 (spec iss 1): S59–68.127. Wang C, Swerdloff RS. Limitations of semenanalysis as a test of male fertility and anticipated needs from newer tests.Fertil Steril 2014; 102: 1502–07.128. Agarwal A, Majzoub A, Parekh N, Henkel R.A schematic overview of the current status of male infertility practice. WorldJ Mens Health 2020; 38: 308–22.129. Oehninger S, Franken DR, Ombelet W. Spermfunctional tests. Fertil Steril 2014; 102: 1528–33.130. Agarwal A, Bragais FM, Sabanegh E.Assessing sperm function. Urol Clin North Am 2008; 35: 157–71, vii.131. Dias TR, Cho C-L, Agarwal A. Spermassessment: novel approaches and their indicative value. In: Nagy ZP, VargheseAC, Agarwal A, eds. In vitro fertilization: a textbook of current and emergingmethods and devices. Cham, Switzerland: Springer, 2019: 265–81.132. Agarwal A, Virk G, Ong C, du Plessis SS.Effect of oxidative stress on male reproduction. World J Mens Health 2014; 32:1–17.133. Agarwal A, Allamaneni SS. Sperm DNA damageassessment: a test whose time has come. Fertil Steril 2005; 84: 850–53.134. Ward WS. Function of sperm chromatinstructural elements in fertilization and development. Mol Hum Reprod 2010; 16:30–36.135. Oleszczuk K, Giwercman A, Bungum M.Intra-individual variation of the sperm chromatin structure assay DNAfragmentation index in men from infertile couples. Hum Reprod 2011; 26:3244–48.136. Majzoub A, Agarwal A, Cho CL, Esteves SC.Sperm DNA fragmentation testing: a cross sectional survey on current practicesof fertility specialists. Transl Androl Urol 2017; 6 (suppl 4): S710–19.137. Agarwal A, Panner Selvam MK, Baskaran S,Cho CL. Sperm DNA damage and its impact on male reproductive health: a criticalreview for clinicians, reproductive professionals and researchers. Expert RevMol Diagn 2019; 19: 443–57.138. Agarwal A, Cho CL, Majzoub A, Esteves SC.The Society for Translational Medicine: clinical practice guidelines for spermDNA fragmentation testing in male infertility. Transl Androl Urol 2017; 6(suppl 4): S720–33.139. Greabu M, Battino M, Mohora M, Olinescu R,Totan A, Didilescu A. Oxygen, a paradoxical element? Rom J Intern Med 2008; 46:125–35.140. Halliwell B, Gutteridge JMC. Free radicalsin biology and medicine. Oxford: Oxford University Press, 2015.141. Zorn B, Vidmar G, Meden-Vrtovec H. Seminalreactive oxygen species as predictors of fertilization, embryo quality andpregnancy rates after conventional in vitro fertilization and intracytoplasmicsperm injection. Int J Androl 2003; 26: 279–85.142. Yumura Y, Iwasaki A, Saito K, Ogawa T,Hirokawa M. Effect of reactive oxygen species in semen on the pregnancy ofinfertile couples. Int J Urol 2009; 16: 202–07.143. Venkatesh S, Shamsi MB, Dudeja S, Kumar R,Dada R. Reactive oxygen species measurement in neat and washed semen:comparative analysis and its significance in male infertility assessment. ArchGynecol Obstet 2011; 283: 121–26.144. Agarwal A, Ahmad G, Sharma R. Referencevalues of reactive oxygen species in seminal ejaculates using chemiluminescenceassay. J Assist Reprod Genet 2015; 32: 1721–29.145. Agarwal A, Sharma R, Roychoudhury S, DuPlessis S, Sabanegh E. MiOXSYS: a novel method of measuring oxidation reductionpotential in semen and seminal plasma. Fertil Steril 2016; 106: 566–73.e10.146. Agarwal A, Panner Selvam MK, Arafa M, etal. Multi-center evaluation of oxidation-reduction potential by the MiOXSYS inmales with abnormal semen. Asian J Androl 2019; 21: 565–69.147. Young J, Xu C, Papadakis GE, et al.Clinical management of congenital hypogonadotropic hypogonadism. Endocr Rev2019; 40: 669–710.148. Schoor RA, Elhanbly S, Niederberger CS,Ross LS. The role of testicular biopsy in the modern management of maleinfertility. J Urol 2002; 167: 197–200.149. Practice Committee of the American Societyfor Reproductive Medicine in collaboration with the Society for MaleReproduction and Urology. The management of obstructive azoospermia: acommittee opinion. Fertil Steril 2019; 111: 873–80.150. Jow WW, Steckel J, Schlegel PN, Magid MS,Goldstein M. Motile sperm in human testis biopsy specimens. J Androl 1993; 14:194–98.151. Schlegel PN. Testicular sperm extraction:microdissection improves sperm yield with minimal tissue excision. Hum Reprod1999; 14: 131–35.152. Corona G, Minhas S, Giwercman A, et al.Sperm recovery and ICSI outcomes in men with non-obstructive azoospermia: asystematic review and meta-analysis. Hum Reprod Update 2019; 25: 733–57.153. Turek PJ, Cha I, Ljung BM. Systematicfine-needle aspiration of the testis: correlation to biopsy and results oforgan “mapping” for mature sperm in azoospermic men. Urology 1997; 49: 743–48.154. Bernie AM, Mata DA, Ramasamy R, SchlegelPN. Comparison of microdissection testicular sperm extraction, conventionaltesticular sperm extraction, and testicular sperm aspiration for nonobstructiveazoospermia: a systematic review and meta-analysis. Ferti Steril 2015; 104: 1099–103.e1–3.155. Corona G, Pizzocaro A, Lanfranco F, et al.Sperm recovery and ICSI outcomes in Klinefelter syndrome: a systematic reviewand meta-analysis. Hum Reprod Update 2017; 23: 265–75.156. Cho CL, Esteves SC, Agarwal A. Indicationsand outcomes of varicocele repair. Panminerva Med 2019; 61: 152–63.157. Durairajanayagam D, Agarwal A, Ong C.Causes, effects and molecular mechanisms of testicular heat stress. ReprodBiomed Online 2015; 30: 14–27.158. Esteves SC, Miyaoka R, Roque M, Agarwal A.Outcome of varicocele repair in men with nonobstructive azoospermia: systematicreview and meta-analysis. Asian J Androl 2016; 18: 246–53.159. Kirby EW, Wiener LE, Rajanahally S,Crowell K, Coward RM. Undergoing varicocele repair before assisted reproductionimproves pregnancy rate and live birth rate in azoospermic and oligospermic menwith a varicocele: a systematic review and meta-analysis. Fertil Steril 2016;106: 1338–43.160. Shridharani A, Owen RC, Elkelany OO, KimED. The significance of clinical practice guidelines on adult varicoceledetection and management. Asian J Androl 2016; 18: 269–75.161. Rajfer J. Varicoceles: practiceguidelines. Rev Urol 2007; 9: 161.162. Håkonsen LB, Thulstrup AM, Aggerholm AS,et al. Does weight loss improve semen quality and reproductive hormones? Resultsfrom a cohort of severely obese men. Reprod Health 2011; 8: 24.163. Ibañez-Perez J, Santos-Zorrozua B,Lopez-Lopez E, Matorras R, Garcia-Orad A. An update on the implication ofphysical activity on semen quality: a systematic review and meta-analysis. ArchGynecol Obstet 2019; 299: 901–21.164. Prentki Santos E, López-Costa S, Chenlo P,et al. Impact of spontaneous smoking cessation on sperm quality: case report.Andrologia 2011; 43: 431–35.165. Guthauser B, Boitrelle F, Plat A,Thiercelin N, Vialard F. Chronic excessive alcohol consumption and malefertility: a case report on reversible azoospermia and a literature review.Alcohol Alcohol 2014; 49: 42–44.166. Attia AM, Abou-Setta AM, Al-Inany HG.Gonadotrophins for idiopathic male factor subfertility. Cochrane Database SystRev 2013; 8: CD005071.167. Siddiq FM, Sigman M. A new look at themedical management of infertility. Urol Clin North Am 2002; 29: 949–63.168. Mulhall JP, Trost LW, Brannigan RE, et al.Evaluation and management of testosterone deficiency: AUA Guideline. J Urol2018; 200: 423–32.169. Gharagozloo P, Aitken RJ. The role ofsperm oxidative stress in male infertility and the significance of oralantioxidant therapy. Hum Reprod 2011; 26: 1628–40.170. Smits RM, Mackenzie-Proctor R, Yazdani A,Stankiewicz MT, Jordan V, Showell MG. Antioxidants for male subfertility.Cochrane Database Syst Rev 2019; 3: CD007411.171. Lee SH, Song H, Park YS, Koong MK, SongIO, Jun JH. Poor sperm quality affects clinical outcomes of intracytoplasmicsperm injection in fresh and subsequent frozen-thawed cycles: potentialpaternal effects on pregnancy outcomes. Fertil Steril 2009; 91: 798–804.172. Esteves SC, Roque M, Bradley CK, GarridoN. Reproductive outcomes of testicular versus ejaculated sperm forintracytoplasmic sperm injection among men with high levels of DNAfragmentation in semen: systematic review and meta-analysis. Fertil Steril2017; 108: 456–67.e1.173. Thirumavalavan N, Gabrielsen JS, Lamb DJ.Where are we going with gene screening for male infertility? Fertil Steril2019; 111: 842–50.174. Araujo TF, Friedrich C, Grangeiro CHP, etal. Sequence analysis of 37 candidate genes for male infertility: challenges invariant assessment and validating genes. Andrology 2020; 8: 434–41.175. Chen S, Wang G, Zheng X, et al.Whole-exome sequencing of a large Chinese azoospermia and severe oligospermiacohort identifies novel infertility causative variants and genes. Hum Mol Genet2020; 29: 2451–59.176. Swain N, Samanta L, Agarwal A, et al.Aberrant upregulation of compensatory redox molecular machines may contributeto sperm dysfunction in infertile men with unilateral varicocele: a proteomicinsight. Antioxid Redox Signal 2020; 32: 504–21.177. Yadav RP, Kotaja N. Small RNAs inspermatogenesis. Mol Cell Endocrinol 2014; 382: 498–508.178. Hilz S, Modzelewski AJ, Cohen PE, GrimsonA. The roles of microRNAs and siRNAs in mammalian spermatogenesis. Development2016; 143: 3061–73.179. Ni MJ, Hu ZH, Liu Q, et al. Identificationand characterization of a novel non-coding RNA involved in sperm maturation.PLoS One 2011; 6: e26053.180. Holt JE, Stanger SJ, Nixon B, McLaughlinEA. Non-coding RNA in spermatogenesis and epididymal maturation. In: Wilhelm D,Bernard P, eds. Non-coding RNA and the reproductive system. Dordrecht: SpringerNetherlands, 2016: 95–120.181. Jafarzadeh N, Mani-Varnosfaderani A,Minai-Tehrani A, Savadi-Shiraz E, Sadeghi MR, Gilany K. Metabolomicsfingerprinting of seminal plasma from unexplained infertile men: a need fornovel diagnostic biomarkers. Mol Reprod Dev 2015; 82: 150.182. Darbandi M, Darbandi S, Agarwal A, et al.Reactive oxygen speciesinduced alterations in H19-Igf2 methylation patterns,seminal plasma metabolites, and semen quality. J Assist Reprod Genet 2019; 36:241–53.183. Agarwal A, Durairajanayagam D, Halabi J,Peng J, Vazquez-Levin M. Proteomics, oxidative stress and male infertility.Reprod Biomed Online 2014; 29: 32–58.184. Sharma R, Agarwal A, Mohanty G, et al.Proteomic analysis of human spermatozoa proteins with oxidative stress. ReprodBiol Endocrinol 2013; 11: 48.185. Camargo M, Intasqui P, Belardin LB, et al.Molecular pathways of varicocele and its repair—a paired labelled shotgunproteomics approach. J Proteomics 2019; 196: 22–32.186. Agarwal A, Sharma R, Durairajanayagam D,et al. Differential proteomic profiling of spermatozoal proteins of infertilemen with unilateral or bilateral varicocele. Urology 2015; 85: 580–88.187. Cao X, Cui Y, Zhang X, et al. Proteomicprofile of human spermatozoa in healthy and asthenozoospermic individuals.Reprod Biol Endocrinol 2018; 16: 16.188. Saraswat M, Joenväärä S, Jain T, et al.Human spermatozoa quantitative proteomic signature classifies normo- andasthenozoospermia. Mol Cell Proteomics 2017; 16: 57–72.189. Liao TT, Xiang Z, Zhu WB, Fan LQ. Proteomeanalysis of roundheaded and normal spermatozoa by 2-D fluorescence differencegel electrophoresis and mass spectrometry. Asian J Androl 2009; 11: 683–93.190. Alvarez Sedó C, Rawe VY, Chemes HE.Acrosomal biogenesis in human globozoospermia: immunocytochemical,ultrastructural and proteomic studies. Hum Reprod 2012; 27: 1912–21.191. Panner Selvam MK, Agarwal A, Pushparaj PN.A quantitative global proteomics approach to understanding the functionalpathways dysregulated in the spermatozoa of asthenozoospermic testicular cancerpatients. Andrology 2019; 7: 454–62.192. Dias TR, Agarwal A, Pushparaj PN, Ahmad G,Sharma R. Reduced semen quality in patients with testicular cancer seminoma isassociated with alterations in the expression of sperm proteins. Asian J Androl2020; 22: 88–93.193. Benson M. Clinical implications of omicsand systems medicine: focus on predictive and individualized treatment. JIntern Med 2016; 279: 229–40.194. Chu KY, Nassau DE, Arora H, Lokeshwar SD,Madhusoodanan V, Ramasamy R. Artificial intelligence in reproductive urology.Curr Urol Rep 2019; 20: 52.195. Rigby MJ. Ethical dimensions of usingartificial intelligence in health care. AMA J Ethics 2019; 21: e121–24.196. Davenport T, Kalakota R. The potential forartificial intelligence in healthcare. Future Healthc J 2019; 6: 94–98.197. Nagamatsu G, Hayashi K. Stem cells, invitro gametogenesis and male fertility. Reproduction 2017; 154: F79–91.198. Fang F, Li Z, Zhao Q, Li H, Xiong C. Humaninduced pluripotent stem cells and male infertility: an overview of currentprogress and perspectives. Hum Reprod 2018; 33: 188–95.199. Pourmoghadam Z, Aghebati-Maleki L,Motalebnezhad M, Yousefi B, Yousefi M. Current approaches for the treatment ofmale infertility with stem cell therapy. J Cell Physiol 2018; 233: 6455–69.200. Forbes CM, Flannigan R, Schlegel PN.Spermatogonial stem cell transplantation and male infertility: current statusand future directions. Arab J Urol 2017; 16: 171–80.201. Neuhaus N, Schlatt S. Stem cell-basedoptions to preserve male fertility. Science 2019; 363: 1283–84.