初中数学压轴题:矩形菱形正方形中的动点最值
矩形菱形正方形中的动点最值
本题摘自《初中数学典型题思路分析》的赠送电子资料.
如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为____.
【思路分析】
过点A和点E作AG⊥BC,EH⊥BC于点G和H,可得矩形AGHE,再根据菱形ABCD中,AB=6,∠B=60°,可得BG=3,AG=3√3=EH,由题意可得,FH=FC﹣HC=2﹣1=1,进而根据勾股定理可得EF的长.
【答案解析】
如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,
得矩形AGHE,
∴GH=AE=2,
∵在菱形ABCD中,AB=6,∠B=60°,
∴BG=3,AG=3√3=EH,
∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,
∵EF平分菱形面积,
∴FC=AE=2,
∴FH=FC﹣HC=2﹣1=1,
在Rt△EFH中,根据勾股定理,得
本题摘自《初中数学典型题思路分析》的赠送电子资料.
如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.
(1)求证:AF=EF;
(2)求MN+NG的最小值;
(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?
【思路分析】
(1)连接CF,根据垂直平分线的性质和菱形的对称性得到CF=EF和CF=AF即可得证;
(2)连接AC,根据菱形对称性得到AF+CF最小值为AC,再根据中位线的性质得到MN+NG的最小值为AC的一半,即可求解;
(3)延长EF,交DC于H,利用外角的性质证明∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,再由AF=CF=EF,得到∠AEF=∠EAF,∠FEC=∠FCE,从而推断出∠AFD=∠FAE+∠ABF=∠FAE+∠CEF,从而可求出∠ABF=∠CEF=30°,即可证明.
【答案解析】
(1)连接CF,
∵FG垂直平分CE,
∴CF=EF,
∵四边形ABCD为菱形,
∴A和C关于对角线BD对称,
∴CF=AF,
∴AF=EF;
(2)连接AC,
(3)不变,理由是:
延长EF,交DC于H,
∵∠CFH=∠FCE+∠FEC,∠AFH=∠FAE+∠FEA,
∴∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,
∵点F在菱形ABCD对角线BD上,根据菱形的对称性可得:
∠AFD=∠CFD=1/2∠AFC,
∵AF=CF=EF,
∴∠AEF=∠EAF,∠FEC=∠FCE,
∴∠AFD=∠FAE+∠ABF=∠FAE+∠CEF,
∴∠ABF=∠CEF,
∵∠ABC=60°,
∴∠ABF=∠CEF=30°,为定值.