数据分析|漏斗分析模型

什么是漏斗分析

说起数据分析,很多人把精力放在了各种高大上的数据模型上。事实上,比较常见的一些数据分析方法,往往都不是什么非常高深的学问,在实践中,涉及到的方法论或者复杂性,其实是远低于学校里学习的专业知识。而我们非常看重数据分析,本质是看重“数据”,以及利用数据来做的“分析”,好的结论不一定有多么高大上的模型,但它一定有数据作为支持。

现如今我们所做的各种决策,都在强调数据的重要性,不论是市场调研的数据,还是产品上线后的用户数据,都贯穿了产品研发的整个生命周期。

今天我们来讲一个原理非常简单,但却非常实用的分析方法:漏斗分析。

说起漏斗分析,这是数据领域最常见的一种“程式化”数据分析方法,它能够科学的评估一种业务过程,从起点到终点,各个阶段的转化情况。通过可以量化的数据分析,帮助业务找到有问题的业务环节,并进行针对性的优化。

在电商模式中,提到“转化率”,就往往配有一张“漏斗分析图”作为辅助的说明。这是因为在电商模式下,我们所做的每一项活动,都与用户有着直接或者间接的联系,而我们活动的本质也都是一样的:为了让用户成为持久的消费者。

因此,当我们分析用户从进入产品到完成消费的过程时,可以大体分为如下几个关键步骤:进入首页、查看商品页、加入购物车、进入支付页面、成功支付。通过分析每个阶段的转化率和流失率,能够直观地发现很多问题,进而找到提升KPI的方法。

如何用数据分析做漏斗分析呢?其实我个人理解为AARRR模型。

漏斗分析的作用

漏斗分析,是一个非常经典的模型,自问世以来,衍生出了诸如AARRR用户增长模型、SICAS用户行为消费模型等衍生版本,基本上是各类分析报表的标配。

大多数据互联网产品,其本身的商业逻辑就是一个虚拟的漏斗,而我们的目的就在于如何让用户顺利的到达我们所设定的“目标行为”,如支付、注册。

例如,在用户运营领域,漏斗对于用户行为的分析而言,是非常有必要的。在产品上线后,关键的业务路径,都要进行漏斗分析,判断每个环节的设计是否存在缺陷。典型的如用户注册场景,从引导 - 注册 - 分享 - 进入首页,往往在分享这个环节,转化率非常低,那么我们就要考虑是否放弃这个环节,或者有什么其他的优化动作。

例如,在自媒体运营方向,假设一个自媒体账号有10W粉丝,发送一篇文章获得1W阅读,大约有1K用户收藏了文章,最后由100用户进行了付费打赏。那么这个10W - 1W - 1K - 100也是典型的漏斗环节,用户付费转化率就是0.1%。如果需要提升付费转化率,需要以这个数据作为依据,来判断到底是应该打广告来增加阅读量,还是引导用户多收藏文章。

以上是两个非常简单的例子,在具备一定规模的公司中,通常都有非常多类似的问题,是迫切需要进行分析解答的,包括但不限于:

为什么注册步骤转化率非常低?
为什么很多人下单了却没有支付?
为什么某个渠道量很大,但点击率却非常低?
如果不做浏览器的适配,那么会损失多大的用户规模?
进入首页却没有下单的用户,接下来都去了哪里?...
一个设计科学的漏斗分析体系,能够快速解答和分析这些问题,是可以实实在在的改善业务、提升业务收入的。

漏斗分析的作用,有两个大的特点:

其一,漏斗分析,能够梳理业务的关键流程环节,监控用户、流量在各个业务阶段的转化情况,及时对低转化率环节进行分析,定位流失的关键环节,进行持续的优化。

其二,漏斗分析,往往配合多维度之间的对比,针对不同的人群、渠道做差异化的分析,如新用户、老客户,如新渠道、老渠道,分析转化率最好和最差的维度,从而提升运营精度和效率。

接下来我们讲解一下如何进行“漏斗分析”。

如何进行漏斗分析

按照惯例,我们通过“分解”的形式,来一步一步的阐述这个分析过程。

第一步,还原业务关键过程

前文提到过,漏斗分析是针对业务的关键流程环节,做洞察和分析。因此在进行分析前,我们首先需要还原这个业务过程的关键步骤,并验证其是否是可以通过漏斗进行分析。

例如,在电商广告场景下,广告主可以通过各种方法,向用户宣传自己的产品。这时候,用户会根据宣传的曝光词,点击搜索框进入到搜索页面,这时候会根据平台提示的关键词进行搜索,或者是主动发起搜索,到达搜索呈现的结果页之后,再进行相应的点击行为,并完成最终下单。

这个时候我们可以确定一条从搜索到展示的关键路径:广告投放展示 - 搜索关键词 - 点击搜索结果 - 完成下单。

进一步进行思考,我们可以把每一步赋予业务上的涵义,即:广告投放展示(引起用户兴趣) - 搜索关键词(用户产生兴趣) - 点击搜索结果(用户主动发起动作) - 完成下单(达成预期目的)。

第二步,确定漏斗环节与数据采集来源

能够将用户的行为进行还原后,我们便可以定下漏斗的环节,确定可以分析的数据,并标记数据的来源。

以上述例子为模型,我们可以作如下的区分:

广告投放展示(引起用户兴趣):在不同渠道广告展示的曝光量、点击量、点击用户数;

搜索关键词(用户产生兴趣):在电商平台中,不同关键词所产生的搜索量、搜索用户数;

点击搜索结果(用户主动发起动作):在电商平台中,相应关键词所产生的点击量、点击用户数;

完成下单(达成预期目的):产生下单行为的用户数。

第三步,制作漏斗分析模型

从上一步的结果中,我们评估进行可以进行分析的数据维度,并通过报表平台搭建对应的漏斗图,展示可以分析的数据。

例如我们可以将渠道作为分析维度,将展示、搜索、点击过程中产生的曝光量、点击量作为分析的一个过程,也可以通过点击/搜索/下单产生的用户数,作为分析的一个过程,也可以将用户进行分组,查看分组的结果。

第四步,进行漏斗分析

虽然现在可以进行数据分析了,但在实际的业务场景中,一种现象并不是单一的数据结果所能够解释的,往往需要通过多个角度的分析,来还原一个更准确和全面的答案。

常见的分析过程如下:

其一,查看漏斗转化率,将结果按照渠道、用户分组进行查看,找出转化率明显偏低的环节;

其二,分析数据变化的趋势,按照时间,分析当前阶段,在不同日、周、月、季、年下的变化趋势,找出转化波动率最大/最小的时间点;

其三,不同维度对比,筛选不同的渠道、用户分组,将转化率和变化趋势进行对比。如果不同渠道数据相差较大,那么原因可能是某些渠道存在作弊情况;如果是不同手机型号存在差异,那么可能是手机的适配性、网速等存在差异;如果是不同的用户组存在差异,那么根据用户分组方法的不同,如购买能力、新老用户,也可以分析出一部分原因。

其次,如果不能够得出明确的结论,需要再返回之前的步骤,思考是按照关键词进行分类,或者是新增某个环节的分析,或者是向其他部门寻求类似场景的分析思路,然后再对刚才的过程进行复盘和优化,直到找到最可靠的原因。

根据前文的阐述,我们可以看出,从分析人员的角度出发,当然是工具越自动化越好,能够更快的重复步骤,找到原因。但是从数仓或者工程人员的角度出发,其实这些分析诉求具有高度的不确定性,因此这种高度自动化的平台很难实现,更倾向于通过“提需求”的方式来人肉完成部分的工作。

从业务发展的角度上看,在公司快速发展的时候,分析师与数仓一体化的配合,走部分人肉的方式是无可厚非的,但当规模增加到一定程度时,对于成熟稳定业务的支持,就需要有工具做配合了,因为很多深入的分析细节,人肉的“效费比”太低,人力成本上无法负担。

漏斗分析的进阶学习

在学习了一些基本的知识之后,我们还需要将问题进行思考,探讨那些更加“自动化”和“科学化”的做事方法。

自动化,是提升做事情的效率、降低人力成本的最有效途径,在业务发展平缓的公司中,涨薪的根源,便是节约“技术支持”所省下来的成本。

因此,在漏斗分析这件事情上,我们可以把关键要素抽象出来,从而为设计自动化的平台作参考。漏斗分析,可以抽象出三要素:

第一,是时间,指漏斗的转化周期,是从某一环节到其他环节所消耗的时长。在实际的业务过程中,一般需要根据业务的特定,设定一个合理的转化周期,如最近30天,超过该周期的就不再认为是一个合理的转化。这是设计自动化产品首要考虑的因素。

第二,是节点,指漏斗的每一环节的配置方法,在业务上具备可操作性,同时也是产品的关键路径,方便分析人员自由的搭配查看。

第三,是流量,指人群/用户的点击、搜索或某个具体的业务动作,由于不同人群/用户在相同漏斗下的转化是不一样的,因此需要对人群/用户进行合理的分组,更清晰定位产品特点,得出合理的解释。

下一步讨论“科学化”的做事,主要指科学归因的重要性。

漏斗分析,往往与“归因分析”相关,因为能够到达关键环节的动作有很多实际上,业务流程转化并非理想中那么简单。例如用户下单某一件商品,可能是因为看了电视广告、可能是因为随手点击某个直播链接、也可能是因为看了朋友分享的朋友圈直接进行下单。在市场营销的视角里,市场活动、线上运营、邮件营销、电商广告等,都可能触发用户购买。因此需要科学的判断,这一次的结果,是与哪些“原因”相关,每一次转化节点应根据事件功劳差异(事件对转化的功劳大小)而科学设置。

因此我们往往需要算法的配合,来正确的识别,不同的营销渠道在用户购买决策的全流程中,对用户影响的“功劳”最大、权重较大,能够直接促进用户转化。在进行科学的漏斗分析时,通过归因权重作为漏斗转化的依据,能够大大增大了漏斗分析的科学性。

通过上面两个例子可以看出,一件事情本身的概念可以是非常简单的,但简单不代表其好做,因为实际的业务是非常复杂的,需要根据不同的情况做各种抽象、汇总和升华,这才是分析真正难做的地方。

在当下,各个工种有相互“卷”的趋势,比如前端搞后端,后端搞数据,数据搞分析,分析做业务,但其实只有抓住业务的本质,才知道这么“卷”下去有没有前途,而不仅仅是“为了智能化而智能化”。

(0)

相关推荐

  • 数据分析常用模型

    一.帕累托模型 又称为二八原则,是关于效率与分配的判断方法.约80%的结果是由该系统中约20%的变量产生的. 模型解释 1.当一个企业80%利润来自于20%的客户总数时,这个企业客户群体是健康且趋于稳 ...

  • 数据分析的终极目标:推动业务持续增长

    本文整理自,广州向日葵信息科技有限公司数据产品负责人罗玲上周日(8月13日)在FinTech Club深圳站上的分享<金融数据平台方案的实战分享>.FinTech Club 是诸葛io针对 ...

  • 「漏斗分析」中最不能不重视的大“坑”

    我们在做用户转化分析的时候,经常会有一些稍微不留意就容易踩进的坑,那今天诸葛君就给大家聊一聊「漏斗模型」中容易忽视的"坑". 大家都知道通过漏斗模型进行分析吧. 但是很多同学对这个 ...

  • 一文读懂业务数据的分析思路 | 人人都是产品经理

    编辑导语:在业务数据分析中,新人常常会面临这样一个尴尬的处境:明明掌握了数据分析工具,但对于数据仍无从下手,发现不了其中的业务问题.其实,这是缺乏数据分析思维的表现,作者介绍了一些基础的数据分析思路, ...

  • 空有一堆数据,不会分析怎么办?

    " 如果你不能量化它,你就不能理解它,如果你不能理解就不能控制它,不能控制也就不能改变它. " 做数据分析经常会遇到一个问题: 从一堆海量数据,不知道怎么分析,怎么得出结论: 经常 ...

  • 做转化分析时不能忽略的三个问题!

    我们在做用户转化分析的时候,经常会有一些稍微不留意就容易踩进的坑,今天我们在聊一聊这些不能忽视的地方. 1.针对不同的业务分析设置不同的转化周期 做转化分析的时候, 基于业务分析目标的不同, 需要设置 ...

  • 数据分析思维及其意义

    黎伟斌(德策) 阿里技术 一 数据分析的意义 Google的数字营销传播者Avinash Kaushik曾说"All data in aggregate is crap",即&qu ...

  • 八大数据分析模型之——漏斗分析模型(三)

    诸葛君说:刚刚接触数据运营的童鞋可能都会产生这样的困惑:数据运营难不难?数学不好怎么办?是不是还需要学习数学建模?其实小编在刚开始接触数据时也常常感到困惑,面对业务指标不知从何下手,比如,之前在知乎上 ...

  • 数据分析一定要懂的分析模型——波士顿矩阵

    产品分析是数据分析永远绕不开的一环,但是很多人在对产品进行分析的时候,会因为无从下手而产生很多疑问,比如怎么分析每一种产品对于用户的吸引力?如何衡量产品的比重?如何准确掌握产品更迭速度?如何对其进行有 ...

  • excel制作漏斗图视频:数据分析的作用及辅助占位数据

    excel制作漏斗图视频|excel漏斗图的作用视频|excel漏斗图数据分析视频|漏斗图辅助占位数据视频 本视频教程由部落窝教育分享.

  • 【数据分析思维】漏斗分析

    【数据分析思维】漏斗分析

  • 人员数据分析的CRISP-DM模型

    如何证明人力资源实践的有效性是重要且有价值,传统上,研究人员通过使用调查,访谈或观察收集数据来产生此类证据.借助这些数据,他们获得了对劳动力的洞察力,并制定了切实可行的干预措施以改善结果. 技术进步导 ...

  • HR数据分析--员工绩效指标

    员工绩效指标是跟踪员工绩效的关键,正确地实施它们是棘手的.但是,如果做得正确,员工绩效指标将使组织和员工都受益.我们在下面列出了最重要的指标,并提供了每个指标的一些实际示例. 员工绩效指标多种多样.我 ...

  • 为HR数据分析建立业务假设?

    为业务人员分析制定业务问题和发展假设,以确保你在分析主题中增加业务价值,研究如何构建业务问题,业务问题是否与实际定义假设相关. 什么是假设?假设是:基于有限证据做出的假设或建议的解释作为进一步调查的起 ...

  • HR数据分析中常用的21个数据源

    我们通常听到的一个问题是"什么可以用于分析的数据源?" 在本文中,我们将列出HR和更广泛业务中的许多常见数据源,这些数据源将有助于您进行人员分析. HR数据源可以分为3类: 一.H ...

  • 人力资源数据分析

    最近几天,支付宝.抖音.酷狗.喜马拉雅等公司相继发布2019年个人使用报告,发现自己的所作所为都在上面展现的一览无余没有死角,一方面感到数据分析的可怕,另外一方面在想是否可以利用数据在促进工作的提升, ...