指数平均不等式的证明与运用
陕西省汉中市镇巴中学(723600) 刘再平 李 靖
对于实数a,b,且a̸=b,定义
为a,b的指数平均数,则
.
证明 先证指数平均不等式的右边,如下:
不妨设a>b,即a-b>0,ea-eb>0,要证不等式的右边,即证a-b>
,则证
换元,令a-b=t>0,所以需证
构造函数
即证f(x)> 0.求导得
即f(x)为(0,+∞)上的增函数,则f(x)>f(0)=0,不等式右边得证,同理可证不等式左边.
综上述所,指数平均不等式链得证.
上述指数平均不等式有着优美的几何意义,即“无字证明”,如下:
图1
图2
如图1,曲边梯形面积大于直角边梯形面积,即S曲梯 > S直梯,所以
,即ea-eb>
则
故不等式左边得证;
如图2,直角边梯形面积大于曲边梯形面积,即S曲梯 < S直梯,所以
,即ea-eb<
,则
,故不等式右边得证.
综上述所,指数平均不等式链得证.
运用上述指数平均不等式可以简解下述函数与导数压轴题.
例1 已知函数f(x)=ex,x1,x2∈ R,且x1=x2,若
求k的取值范围.
解 由题
不妨设x1>x2,即x1-x2>0,所以
由指数平均不等式|k|(ex1+ex2),又 ex1+ex2> 0,所以
,即
或
.
点评 此题运用指数平均不等式的右边恰到好处的放缩了原不等式,快速的获得了关于参数k的不等关系,简洁的求得了k的取值范围.
例2 (2013年高考陕西理科压轴题)已知函数f(x)=ex,x∈R.
(Ⅰ)若直线y=kx+1与f(x)的反函数的图像相切,求实数k的值;
(ⅠⅠ)设x> 0,讨论曲线y=f(x)与曲线y=mx2(m >0)公共点的个数.
(ⅠⅠⅠ)设 a < b,比较
的大小,并说明理由.
解 (Ⅰ)k=
;
(ⅠⅠ)当 0 < m <
时,无公共点;当
时,有1个公共点;当m>
时,有2个公共点.
(ⅠⅠⅠ)运用指数平均不等式“秒杀”如下:由
不妨令 b=x1,a=x2,则
故
得证.
点评 此道压轴题的压轴问只需要将题意翻译之后,便是指数平均值不等式的右边,问题迅速解决.
学习数学就要善于解题,数学解题的工具是双基,正如波利亚所说:“货源充足和组织良好的知识仓库是一个解题者的重要资本”,也就是说知识面越广对数学解题的帮助势必越大,而此文阐述的指数平均不等式虽然教材上未曾提及,然而无疑是解决相关高考压轴题的好工具.