PCL超体聚类

超体聚类是一种图像的分割方法。

超体(supervoxel)是一种集合,集合的元素是“体”。与体素滤波器中的体类似,其本质是一个个的小方块。与大部分的分割手段不同,超体聚 类的目的并不是分割出某种特定物体,超体是对点云实施过分割(over segmentation),将场景点云化成很多小块,并研究每个小块之间的关系。这种将更小单元合并的分割思路已经出现了有些年份了,在图像分割中,像 素聚类形成超像素,以超像素关系来理解图像已经广为研究。本质上这种方法是对局部的一种总结,纹理,材质,颜色类似的部分会被自动的分割成一块,有利于后 续识别工作。比如对人的识别,如果能将头发,面部,四肢,躯干分开,则能更好的对各种姿态,性别的人进行识别。

点云和图像不一样,其不存在像素邻接关系。所以,超体聚类之前,必须以八叉树对点云进行划分,获得不同点团之间的邻接关系。与图像相似点云的邻接关系也有很多,如面邻接,线邻接,点邻接。

超体聚类实际上是一种特殊的区域生长算法,和无限制的生长不同,超体聚类首先需要规律的布置区域生长“晶核”。晶核在空间中实际上是均匀分布的,并指定晶核距离(Rseed)。再指定粒子距离(Rvoxel)。再指定最小晶粒(MOV),过小的晶粒需要融入最近的大晶粒。

这些基本参数在接下来的参数中会有设置

#include <pcl/console/parse.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/segmentation/supervoxel_clustering.h>
//VTK include needed for drawing graph lines
#include <vtkPolyLine.h>// 数据类型

typedef pcl::PointXYZRGBA PointT; typedef pcl::PointCloud<PointT> PointCloudT; typedef pcl::PointNormal PointNT; typedef pcl::PointCloud<PointNT> PointNCloudT; typedef pcl::PointXYZL PointLT; typedef pcl::PointCloud<PointLT> PointLCloudT;//可视化

void addSupervoxelConnectionsToViewer (PointT &supervoxel_center,PointCloudT &adjacent_supervoxel_centers,std::string supervoxel_name,boost::shared_ptr<pcl::visualization::PCLVisualizer> & viewer);

int main (int argc, char ** argv) {
//解析命令行  if (argc < 2)  {    pcl::console::print_error ("Syntax is: %s <pcd-file> \n " "--NT Dsables the single cloud transform \n"                                "-v <voxel resolution>\n-s <seed resolution>\n"                                "-c <color weight> \n-z <spatial weight> \n"                                "-n <normal_weight>\n", argv[0]);    
return (1);  }  
//打开点云  PointCloudT::Ptr cloud = boost::shared_ptr <PointCloudT> (new PointCloudT ());  pcl::console::print_highlight ("Loading point cloud...\n");  
if (pcl::io::loadPCDFile<PointT> (argv[1], *cloud))  {    pcl::console::print_error ("Error loading cloud file!\n");  
   return (1);  }  
bool disable_transform = pcl::console::find_switch (argc, argv, "--NT");
 float voxel_resolution = 0.008f; //分辨率  bool voxel_res_specified = pcl::console::find_switch (argc, argv, "-v");
 if (voxel_res_specified)    pcl::console::parse (argc, argv, "-v", voxel_resolution);  
float seed_resolution = 0.1f;  
bool seed_res_specified = pcl::console::find_switch (argc, argv, "-s");  
if (seed_res_specified)    pcl::console::parse (argc, argv, "-s", seed_resolution);
   float color_importance = 0.2f;  
if (pcl::console::find_switch (argc, argv, "-c"))    pcl::console::parse (argc, argv, "-c", color_importance);  
   float spatial_importance = 0.4f;

if (pcl::console::find_switch (argc, argv, "-z"))    pcl::console::parse (argc, argv, "-z", spatial_importance);
 float normal_importance = 1.0f;  if (pcl::console::find_switch (argc, argv, "-n"))    pcl::console::parse (argc, argv, "-n", normal_importance);

//如何使用SupervoxelClustering函数  pcl::SupervoxelClustering<PointT> super (voxel_resolution, seed_resolution);  if (disable_transform)//如果设置的是参数--NT  就用默认的参数  super.setUseSingleCameraTransform (false);  super.setInputCloud (cloud);  super.setColorImportance (color_importance); //0.2f  super.setSpatialImportance (spatial_importance); //0.4f  super.setNormalImportance (normal_importance); //1.0f  std::map <uint32_t, pcl::Supervoxel<PointT>::Ptr > supervoxel_clusters;  pcl::console::print_highlight ("Extracting supervoxels!\n");  super.extract (supervoxel_clusters);
pcl::console::print_info ("Found %d supervoxels\n",supervoxel_clusters.size());  boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));  viewer->setBackgroundColor (0, 0, 0);
 PointCloudT::Ptr voxel_centroid_cloud = super.getVoxelCentroidCloud ();
//获得体素中心的点云  viewer->addPointCloud (voxel_centroid_cloud, "voxel centroids");  viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE,2.0, "voxel centroids");    
//渲染点云  viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_OPACITY,0.95, "voxel centroids");  PointLCloudT::Ptr labeled_voxel_cloud = super.getLabeledVoxelCloud ();  viewer->addPointCloud (labeled_voxel_cloud, "labeled voxels");  viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_OPACITY,0.8, "labeled voxels");  PointNCloudT::Ptr sv_normal_cloud = super.makeSupervoxelNormalCloud (supervoxel_clusters);  
//We have this disabled so graph is easy to see, uncomment to see supervoxel normals    pcl::console::print_highlight ("Getting supervoxel adjacency\n");  std::multimap<uint32_t, uint32_t> supervoxel_adjacency;  super.getSupervoxelAdjacency (supervoxel_adjacency);

//为了使整个超体形成衣服图,我们需要遍历超体的每个临近的个体  std::multimap<uint32_t,uint32_t>::iterator label_itr = supervoxel_adjacency.begin ();  for ( ; label_itr != supervoxel_adjacency.end (); )  {    //First get the label    uint32_t supervoxel_label = label_itr->first;    
//Now get the supervoxel corresponding to the label    pcl::Supervoxel<PointT>::Ptr supervoxel = supervoxel_clusters.at (supervoxel_label);  
 //Now we need to iterate through the adjacent supervoxels and make a point cloud of them    
   PointCloudT adjacent_supervoxel_centers;    std::multimap<uint32_t,uint32_t>::iterator adjacent_itr = supervoxel_adjacency.equal_range (supervoxel_label).first;

for ( ; adjacent_itr!=supervoxel_adjacency.equal_range (supervoxel_label).second; ++adjacent_itr)    {      pcl::Supervoxel<PointT>::Ptr neighbor_supervoxel = supervoxel_clusters.at (adjacent_itr->second);      adjacent_supervoxel_centers.push_back (neighbor_supervoxel->centroid_);    }

//Now we make a name for this polygon    
   std::stringstream ss;    ss << "supervoxel_" << supervoxel_label;

//从给定的点云中生成一个星型的多边形,    addSupervoxelConnectionsToViewer (supervoxel->centroid_, adjacent_supervoxel_centers, ss.str (), viewer);    
//Move iterator forward to next label    label_itr = supervoxel_adjacency.upper_bound (supervoxel_label);  }
 while (!viewer->wasStopped ())  {    viewer->spinOnce (100);  }  return (0); }

//VTK可视化构成的聚类图
void addSupervoxelConnectionsToViewer (PointT &supervoxel_center,                                  PointCloudT &adjacent_supervoxel_centers,                                  std::string supervoxel_name,                        boost::shared_ptr<pcl::visualization::PCLVisualizer> & viewer) {  vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New ();  vtkSmartPointer<vtkCellArray> cells = vtkSmartPointer<vtkCellArray>::New ();  vtkSmartPointer<vtkPolyLine> polyLine = vtkSmartPointer<vtkPolyLine>::New ();  //Iterate through all adjacent points, and add a center point to adjacent point pair  PointCloudT::iterator adjacent_itr = adjacent_supervoxel_centers.begin ();  for ( ; adjacent_itr != adjacent_supervoxel_centers.end (); ++adjacent_itr)  {    points->InsertNextPoint (supervoxel_center.data);    points->InsertNextPoint (adjacent_itr->data);  }  
 
// Create a polydata to store everything in  vtkSmartPointer<vtkPolyData> polyData = vtkSmartPointer<vtkPolyData>::New ();  // Add the points to the dataset  polyData->SetPoints (points);  polyLine->GetPointIds  ()->SetNumberOfIds(points->GetNumberOfPoints ());  for(unsigned int i = 0; i < points->GetNumberOfPoints (); i++)    polyLine->GetPointIds ()->SetId (i,i);  cells->InsertNextCell (polyLine);  // Add the lines to the dataset  polyData->SetLines (cells);  viewer->addModelFromPolyData (polyData,supervoxel_name); }

可执行文件生成后的图像显示如下

当然也可以自己设定参数生成自己想要的效果。同时在不同的场景中,使用的参数是十分重要的,

只是先了解超体的概念,如果想应用到实际的应用中,还需要很多其他的知识 ,所以这里只是基本的学习

(0)

相关推荐