ML之回归预测之Lasso:利用Lasso算法解决回归(实数值评分预测)问题—采用10折交叉验证(测试集error)来评估LassoCV模型
输出结果
设计思路
核心代码
if t==1: X = numpy.array(xList) #Unnormalized X's # X = numpy.array(xNormalized) #Normlized Xss Y = numpy.array(labels) #Unnormalized labels # Y = numpy.array(labelNormalized) #normalized lables elif t==2: X = numpy.array(xList) #Unnormalized X's X = numpy.array(xNormalized) #Normlized Xss Y = numpy.array(labels) #Unnormalized labels Y = numpy.array(labelNormalized) #normalized lables elif t==3: X = numpy.array(xList) #Unnormalized X's X = numpy.array(xNormalized) #Normlized Xss Y = numpy.array(labels) #Unnormalized labels # Y = numpy.array(labelNormalized) #normalized lables
赞 (0)