(9条消息) Backtrader量化平台教程(六)Analyzer
AD:(本人录制的backtrader视频课程,大家多多支持哦~ https://edu.csdn.net/course/detail/9040)
无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。教程链接:https://www.cbedai.net/qtlyx
1.什么是Anayzer
我们写了一个策略,跑了一下,看了一下图,觉得不错。但是,究竟我们的策略如何呢?譬如,Sharpe Ratio是多少,最大回撤是多少等等。这些指标我们如何获取呢?在backtrader中,给我们提供了获取这些指标的途径,就是Analyzer。顾名思义,就是分析师。
这里我们要提一下,Analyzer与Lines这一类数据是不一样的。显然的,Analyzer是在你跑完策略之后给你一个结果,不会每时每刻都有一个数据产生。但是我们要说明的是在backtrader的内部,其实Analyzer也是一种Lines,这可能是出于代码后期兼容性和可扩展性的考虑吧,作为end user,其实不用考虑那么多。
2.如何使用Anayzer
具体怎么使用Analyzer呢?和Strategy、Observe和Datas一样,我们把我们想要的Analyzer加入到cerebro中就可以了,具体使用的方法是:
addanalyzer()
# -*- coding: utf-8 -*-
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import datetime # For datetime objects
import pandas as pd
import backtrader as bt
import numpy as np
# Create a Stratey
class MyStrategy(bt.Strategy):
params = (
('ssa_window', 15),
('maperiod', 15),
)
def log(self, txt, dt=None):
''' Logging function fot this strategy'''
dt = dt or self.datas[0].datetime.date(0)
print('%s, %s' % (dt.isoformat(), txt))
def __init__(self):
# Keep a reference to the "close" line in the data[0] dataseries
self.dataclose = self.datas[0].close
# To keep track of pending orders and buy price/commission
self.order = None
self.buyprice = None
self.buycomm = None
self.sma = bt.indicators.SimpleMovingAverage(
self.datas[0], period=self.params.maperiod)
def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
return
if order.status in [order.Completed]:
if order.isbuy():
self.log(
'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price,
order.executed.value,
order.executed.comm))
self.buyprice = order.executed.price
self.buycomm = order.executed.comm
else: # Sell
self.log('SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
(order.executed.price,
order.executed.value,
order.executed.comm))
self.bar_executed = len(self)
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
self.log('Order Canceled/Margin/Rejected')
self.order = None
def notify_trade(self, trade):
if not trade.isclosed:
return
self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
(trade.pnl, trade.pnlcomm))
def next(self):
self.log('Close, %.2f' % self.dataclose[0])
if self.order:
return
if not self.position:
if self.dataclose[0] > self.sma[0]:
self.log('BUY CREATE, %.2f' % self.dataclose[0])
self.order = self.buy()
else:
if self.dataclose[0] < self.sma[0]:
self.log('SELL CREATE, %.2f' % self.dataclose[0])
self.order = self.sell()
if __name__ == '__main__':
cerebro = bt.Cerebro()
cerebro.addstrategy(MyStrategy)
dataframe = pd.read_csv('dfqc.csv', index_col=0, parse_dates=True)
dataframe['openinterest'] = 0
data = bt.feeds.PandasData(dataname=dataframe,
fromdate = datetime.datetime(2015, 1, 1),
todate = datetime.datetime(2016, 12, 31)
)
cerebro.adddata(data)
cerebro.broker.setcash(100.0)
cerebro.addsizer(bt.sizers.FixedSize, stake=10)
cerebro.broker.setcommission(commission=0.0)
print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name = 'SharpeRatio')
cerebro.addanalyzer(bt.analyzers.DrawDown, _name='DW')
results = cerebro.run()
strat = results[0]
print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())
print('SR:', strat.analyzers.SharpeRatio.get_analysis())
print('DW:', strat.analyzers.DW.get_analysis())
cerebro.plot()
用的还是我们之前SMA的例子。我们着重看一下我们的analyzer是怎么添加和使用的。
cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name = 'SharpeRatio')
cerebro.addanalyzer(bt.analyzers.DrawDown, _name='DW')
results = cerebro.run()
strat = results[0]
print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())
print('SR:', strat.analyzers.SharpeRatio.get_analysis())
print('DW:', strat.analyzers.DW.get_analysis())
cerebro.plot()
我们看一下,在rcerebro run之前,我们先添加了两个analyzer:SharpeRatio和DrawDown,在添加的时候,我们分别对这两个anayzer命令名,也就是
_name = 'SharpeRatio'与 _name='DW'
_name='DW'
为了使用这一anayzer,我们需要获取cerebro run之后的返回值,然后获取策略相关信息,
results = cerebro.run()
strat = results[0]
这一部分在后续解析cerebro时再展开。
print('SR:', strat.analyzers.SharpeRatio.get_analysis())
print('DW:', strat.analyzers.DW.get_analysis())
这里,我们就获取了这一策略的SharpeRatio与回撤的信息了。
我们可以看到,回撤信息布置最大回撤,还有好多。
3.有哪些指标
那么,具体,有哪些Analyzer呢?
笔者大概列了一下:
AnnualReturn
Calmar
DrawDown
TimeDrawDown
GrossLeverage
PositionsValue
PyFolio
LogReturnsRolling
PeriodStats
Returns
SharpeRatio
SharpeRatio_A
SQN
TimeReturn
TradeAnalyzer
Transactions
VWR
大概有这么些,具体后续用到了再详细讲解。