[首藏作品](5774)机器学习成功模拟并预报流感传播

AI精确拆分移动大数据机器学习成功模拟并预报流感传播科技日报北京2月9日电 (记者张梦然)据英国《自然·通讯》杂志9日发表的一项机器学习最新研究,美国科学家团队报告称:对匿名手机数据进行基于机器学习的分析,可以成功模拟并预报病毒性疾病——流感的传播。现阶段研究显示,这个移动地图能够准确预报纽约市和澳大利亚的流感传播情况,未来或还将有潜力对新冠肺炎进行监控。病毒性疾病在人群中的传播,取决于感染者和未感染者之间的互动。目前用来预测疾病在一个城市或国家传播的模型数据,都存在稀疏和不精确的问题,比如通勤调查或网上搜索数据。为了获得一个更稠密的数据集,此次,美国谷歌公司研究人员亚当·萨迪乐克及其同事从打开“位置历史记录”功能的安卓手机上收集了匿名追踪数据,并利用机器学习方法将这些数据拆分成单个“行程”,进而构建出一个人群移动地图。他们借助一个根据医院挂号和检验数据进行校准的传染病传播模型,利用这个移动地图成功模拟“预报”了2016年至2017年纽约市内和周围的流感活动。研究团队发现,这个模型比常用的标准预报模型表现更好,和使用通勤调查数据差不多,但已知通勤调查数据收集起来成本更高。他们还模拟“预报”了2016年流感季澳大利亚国内的流感传播。虽然澳大利亚的人口更稀疏,流感动力学也不同,但这个模型依然能非常准确地预测流感的高峰和低谷。现有的高分辨率移动数据来自手机通话记录,这些记录具有提供者特异性,一般无法反映跨境或跨国移动。位置数据没有这方面的限制,因此对于监测长距离的疾病传播更具潜力。目前,这些数据在完整性上有欠缺,因为智能手机使用率低的小孩和老人的移动数据并不包含在内。虽然存在这些限制,但研究团队证明了利用手机数据预报流行病传播的潜力。总编辑圈点人们通常很难预测病毒会在何时进入人体,潜伏下来,在人群里悄然传播,然后爆发一场战争。在人口密集的大都市,预测传染病的流行,是一个非常必要但难度颇大的课题。研究表明,手机数据加人工智能,或许有预测潜力。但是,技术永远不是万能的。预测了传染病,还得采取强有力的措施进行干预,才可能将其“扼杀”在萌芽状态。控制传染源,切断传播途径,保护易感人群,这三条是古老但有效的方法。但要做到这些,不仅要靠人工智能,更要靠人的智慧与决断。(《科技日报》2021年2月10日第 4  版。)

(0)

相关推荐