清华大学合作研发全球最小飞行结构登上Nature封面,只有笔芯大小,灵感来自枫树种子|专访
这有史以来最小的人造飞行结构诞生,由十几支中外团队联合攻关。
(来源:受访者)
它甚至比笔芯还小,能像种子一样在空中自旋和落下。
(来源:受访者)
微型飞行器包含两部分:电子功能部件和机翼,所有零件都是从微米到毫米级大小。
9 月 23 日,相关论文成为当期 Nature 的封面论文,题目为《受风传种子启发的三维电子微型飞行器》(Three-dimensional electronic microfliers inspired by wind-dispersed seeds)题。
在艺术作品中,种子特别是会飞的种子,始终是浪漫意象的存在。如今,种子竟然启发了一篇 Nature 封面论文。
而该设备并不需要发动机驱动,而是依靠自然风的吹动来进行飞行。
图|枫树种子(来源:Pixabay)
正是通过对枫树种子等依靠风力去接种等植物种子的研究,该团队从空气动力学方面,对微型飞行器进行了优化,从而确保它从高空降落时,能以受控的低速降落。
控制降落速度不仅能保证飞行更稳定,还能让它在空中飞行的范围可以更广阔,借此也能增加它和空气相互作用的时间,从而让它更好地监测空气污染和空气传播疾病。
微型飞行器身上配有各种超小型化技术,包括传感器、电源、无线通信天线和存储数据的嵌入式存储器等。
而此次研究之所以能成功,是因为受到了生物界的启发。在数十亿年的自然界历史中,大自然用非常复杂的空气动力学设计了种子。该研究也借鉴了这些设计理念,并应用于微型飞行器的电子电路中。
(来源:受访者)
枫叶的螺旋桨状种子,在空中旋转之后,就会缓慢平稳地降落地面,这正是大自然提高植物存活率的一个例子。正因此,原本无法自行移动的枫叶种子能传播得更广,枫树后代也能繁殖到更远的地方。
也正因此,自然界中许多种子才展现出复杂而巧妙的空气动力学特性。而在本次微型飞行器的设计过程中,该团队研究了多类植物种子的空气动力学特征,并从星果藤这一植物中找到了最直接的灵感。
在设备的开发设计过程中,一开始该团队设计并制造了多款微型飞行器,其中包括一款与星果藤种子十分相似的的带有三个翅膀的飞行器。
(来源:Nature)
为了确定最理想的结构,他们进行了全尺寸计算的模型设计,通过模拟周围空气流动,最终从微型飞行器身上模拟出三星果藤种子的缓慢可控的旋转。
接下来要进行制备,研究人员使用先进成像和定量流动模式的方法,在实验室中建造并测试了微型飞行器的结构。
采用芯片式设计
制备中,研究人员首先在在平板中造出飞行结构的前驱体。然后,再将这些前体粘在已被稍微拉伸的橡胶基板上。
当原本被拉伸的基底出现松弛时,经过事先控的屈曲过程就会发生,这时机翼便会 “弹出” ,被精确定义的三维形状即可形成。
此外,他们还将电子元件的重心,放在设备的较低位置,从而避免因失去控制而坠落到地面。
可用于环境监测和水质监测等
其实,就是让它和与物联网结合,投撒到山区和田野中,就能监测环境污染。
而给它搭载上 pH 传感器,还可用于监测水质。另外,搭载上光电探测器,则可用于测量不同波长的阳光照射。
当前,很多监测技术在实践中,都必须使用大型设备。该团队设想,如果从飞机或建筑上投下并广泛分散这类设备,就能让它执化学品泄漏后的环境修复监测,还可在不同高度的空气中跟踪污染水平。
与此同时,该团队也考虑到了可能存在的电子垃圾问题,在废弃设备回收方面,他们已开发出一种瞬态电子器件,它能在 “寿终正寝” 后,以无害的方式在水中溶解。
目前该器件以应用于生物可吸收起搏器,效果也得到了验证。目前,他们正使用同样的材料——可降解聚合物、可堆肥导体和可溶解集成电路芯片来制造微型飞行器。
未来,一旦它不小心落入水中,就能自动溶解,实现真正的 “事了拂衣去” 。
(来源:Nature)