快速掌握并发编程---深入学习ThreadLocal

生活中的ThreadLocal

考试题只有一套,老师把考试题打印出多份,发给每位考生,然后考生各自写各自的试卷。考生之间不能相互交头接耳(会当做作弊)。各自写出来的答案不会影响他人的分数。

注意:考试题、考生、试卷。

用代码来实现:

public class ThreadLocalDemo {
    //线程共享变量 localVar
    public static ThreadLocal<String> localVar = new ThreadLocal<>();

static void print(String str) {
        //打印当前线程中本地内存中本地变量的值
        System.out.println(str + " :" + localVar.get());
        //清除本地内存中的本地变量
        localVar.remove();
    }

public static void main(String[] args) {
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                //设置线程1中本地变量的值
                localVar.set("全部写完");
                String threadName = Thread.currentThread().getName();
                //调用打印方法
                print(threadName);
            }
        }, "张三");

Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                //设置线程2中本地变量的值
                localVar.set("写了一半");
                String threadName = Thread.currentThread().getName();
                //调用打印方法
                print(threadName);
            }
        }, "李四");
        Thread t3 = new Thread(new Runnable() {
            @Override
            public void run() {
                //设置线程2中本地变量的值
                localVar.set("完全没写");
                String threadName = Thread.currentThread().getName();
                //调用打印方法
                print(threadName);
            }
        }, "王二");

t1.start();
        t2.start();
        t3.start();
    }
}

输出

李四 :写了一半
王二 :完全没写
张三 :全部写完

背景

ThreadLocal:字面意思为线程本地或者本地线程。但是其实真正含义并非如此,真正的含义是线程本地变量(副本)。

java.lang.ThreadLocalJDK1.2版本的时候引入的,本文是基于JDK1.8版本进行讲解的。

上面考试场景中的几个关键点我们这么可以这么理解:

考试题----共享变量,大家共享

试卷-----考试题的副本

考试----线程

ThreadLocal可以理解为每个线程想绑定自己的东西,相互不受干扰。比如上面的考试场景,考试题大家都是一样的。但是考试题进行复印出来后,每人一份,各自写写各自的,相互不受影响,这就正是ThreadLocal想要实现的功能。

当使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。

可以想想生活中还有没有类似的例子。肯定非常多,只要我们用心去体会。

下面我们就来看看ThreadLocal到底是如何实现的。

ThreadLocal设计原理

ThreadLocal名字中第一个单词Thread表示线程,Local表示本地,我们就理解为线程本地变量了。想了解更多Thread,可看:快速掌握并发编程---Thread常用方法

先看看ThreadLocal的整体

最关心的三个公有方法:set、get、remove

构造方法

 public ThreadLocal() {
 }

构造方法里没有任何逻辑处理,就是简单的创建一个实例。

set方法

源码为

public void set(T value) {
    //获取当前线程    
    Thread t = Thread.currentThread();
    //这是什么鬼?    
    ThreadLocalMap map = getMap(t);        
    if (map != null)            
        map.set(this, value);       
    else
        createMap(t, value);
}

先看看ThreadLocalMap是个什么东东

ThreadLocalMapThreadLocal的静态内部类。

set方法整体为

ThreadLocalMap构造方法

//这个属性是ThreadLocal的,就是获取hashcode(这列很有学问,但是我们的目的不是他)
private final int threadLocalHashCode = nextHashCode();
private Entry[] table;
private static final int INITIAL_CAPACITY = 16;
//Entry是一个弱引用        
static class Entry extends WeakReference<ThreadLocal<?>> {
    Object value;
    Entry(ThreadLocal<?> k, Object v) {
        super(k);
        value = v;   
    } 
}

ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
    //数组默认大小为16
    table = new Entry[INITIAL_CAPACITY];
    //len 为2的n次方,以ThreadLocal的计算的哈希值按照Entry[]取模(为了更好的散列)
    int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
    table[i] = new Entry(firstKey, firstValue);
    size = 1;
    //设置阈值(扩容阈值)
    setThreshold(INITIAL_CAPACITY);  
}

然后我们看看map.set()方法中是如何处理的

    private void set(ThreadLocal<?> key, Object value) {
            Entry[] tab = table;
            int len = tab.length;
            //len 为2的n次方,以ThreadLocal的计算的哈希值按照Entry[]取模
            int i = key.threadLocalHashCode & (len-1);
            //找到ThreadLocal对应的存储的下标,如果当前槽内Entry不为空,
            //即当前线程已经有ThreadLocal已经使用过Entry[i]
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal<?> k = e.get();
                 // 当前占据该槽的就是当前的ThreadLocal ,更新value结束
                if (k == key) {
                    e.value = value;
                    return;
                }
                //当前卡槽的弱引用可能会回收了,key:null value:xxxObject ,
                //需清理Entry原来的value ,便于垃圾回收value,且将新的value 放在该槽里,结束
                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }
           //在这之前没有ThreadLocal使用Entry[i],并进行值存储
            tab[i] = new Entry(key, value);
            //累计Entry所占的个数
            int sz = ++size;
            // 清理key 为null 的Entry ,可能需要扩容,扩容长度为原来的2倍,并需要进行重新hash
            if (!cleanSomeSlots(i, sz) && sz >= threshold){
                rehash();
            }
}

从上面这个set方法,我们就大致可以把这三个进行一个关联了:

ThreadThreadLocalThreadLocalMap

get方法

remove方法

expungeStaleEntry方法代码里有点大,所以这里就贴了出来。

//删除陈旧entry的核心方法
private int expungeStaleEntry(int staleSlot) {
    Entry[] tab = table;
    int len = tab.length;            
    tab[staleSlot].value = null;//删除value
    tab[staleSlot] = null;//删除entry
    size--;//map的size自减
    // 遍历指定删除节点,所有后续节点
    Entry e;
    int i;
    for (i = nextIndex(staleSlot, len);
         (e = tab[i]) != null;
         i = nextIndex(i, len)) {
        ThreadLocal<?> k = e.get();
        if (k == null) {//key为null,执行删除操作
            e.value = null;
            tab[i] = null;
            size--;
        } else {//key不为null,重新计算下标
            int h = k.threadLocalHashCode & (len - 1);
            if (h != i) {//如果不在同一个位置
                tab[i] = null;//把老位置的entry置null(删除)
                // 从h开始往后遍历,一直到找到空为止,插入                         
                while (tab[h] != null){
                    h = nextIndex(h, len);
                }
                tab[h] = e;   
            }
        }
    }
    return i;
}



对象引用

在Java里万事万物皆对象,这里有个对象,那么对象引用是什么呢?

User user=new User("老田");

关于上面这段代码的解释,很大部分人会说user是个对象。

一开始培训机构什么书籍里都说user是个对象,于是也就这么叫user是对象,这里的user指向了对象"老田"。这里的User user是定义了一个对象引用,可以指向任意的User对象,比如:

User user;
user = new User("张三");
user = new User("李四");

一个队对象被user引用了,这里user把他叫做对象引用 。

对象引用就好比男人,对象就是男人的老婆。根据目前我国法律规定,一个男人在任何时候最多只能有一个老婆,但是一辈子可以取多个老婆。哈哈哈!!!

另外如果是下面

int a;
a=1;
a=100;

这里的a,我们通常称之为变量。所以上面的user我们也可以理解为变量。

在Java里对象的引用也是分几种类型的,分以下四种类型:

强引用

软引用

弱引用

虚引用

强引用

强引用就是我们平时开发中用的最多的,比如说:

Person person = new Person("老田");

这个person就是强引用。

当一个对象被强引用时候,JVM垃圾回收的时候是不会回收的,宁愿执行OOM(Out Of Memory)异常也绝不回收,因为JVM垃圾回收的时候会认为这个对象是被用户正在使用,若回收了很有可能造成无法想象的错误。

软引用

如果一个对象具有软引用,内存空间足够,JVM垃圾回收器就不会回收它;如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存,比如网页缓存、图片缓存等。

使用软引用能防止内存泄露,增强程序的健壮性。

java.lang.ref.SoftReference的特点是它的一个实例保存对一个Java对象的软引用, 该软引用的存在不妨碍垃圾收集线程对该Java对象的回收。

也就是说,一旦SoftReference保存了对一个Java对象的软引用后,在垃圾线程对这个Java对象回收前,SoftReference类所提供的get()方法返回Java对象的强引用。

    /**
     * Returns this reference object's referent.  If this reference object has
     * been cleared, either by the program or by the garbage collector, then
     * this method returns <code>null</code>.
     *
     * @return   The object to which this reference refers, or
     *           <code>null</code> if this reference object has been cleared
     */
    public T get() {
        T o = super.get();
        if (o != null && this.timestamp != clock)
            this.timestamp = clock;
        return o;
    }

如果引用对象被清楚或者被GC回收,这个get方法就返回null

弱引用

弱引用也是用来描述非必需对象的,当JVM下一次进行垃圾回收时,无论内存是否充足,都会回收被弱引用关联的对象。在java中,用java.lang.ref.WeakReference类来表示。

与软引用不同的是,不管是否内存不足,弱引用都会被回收。

弱引用可以结合 来使用,当由于系统触发gc,导致软引用的对象被回收了,JVM会把这个弱引用加入到与之相关联的ReferenceQueue中,不过由于垃圾收集器线程的优先级很低,所以弱引用不一定会被很快回收。

虚引用

虚引用和前面的软引用、弱引用不同,它并不影响对象的生命周期。在java中用java.lang.ref.PhantomReference类表示。如果一个对象与虚引用关联,则跟没有引用与之关联一样,在任何时候都可能被垃圾回收器回收。

注意:虚引用必须和引用队列关联使用,当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会把这个虚引用加入到与之 关联的引用队列中。程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。如果程序发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。

好了上面就大概说了一下对象的四大引用,主要本文后面需要用到弱引用。

ThreadLocal 内存泄漏

讲到内存泄漏,那我们还是把内存溢出和内存泄漏大致说一下。

内存溢出

在JVM如果发生内存溢出,说明内存不够实用,撑爆了,也就是我们说的OOM。大量内存得不到释放,又不断申请内存空间。

系统内存使用200M,已经使用了180M,可是你说你还想使用50M,于是系统就受不了。

就想气球一样,原本已经到极限了,你还是使劲打气,很容易就导致气球爆炸了。

就想你只能扛100斤的东西,现在给你200斤,肯定受不了。

内存泄漏

强引用所指向的对象不会被回收,可能导致内存泄漏,虚拟机宁愿抛出OOM也不会去回收他指向的对象。前面说到强引用的时候,如果对象一直被引用,JVM是不会回收他的,直到最后系统OOM

看过《树先生》电影的人都知道,树先生家里的地被别人占用了,但是树先生不敢把人家怎么样。如果是很多人都去占用树先生家的地和财产,到最后树先生不就要饿死么。树先生这部电影确实好看,看完一遍基本上不知道在说什么,主要是树先生幻想的太多,很多人看了两遍也不是很懂。扯远了。。。

ThreadLocal内存泄漏

内存泄漏案例

模拟了一个线程数为THREAD_LOOP_SIZE的线程池,所有线程共享一个ThreadLocal 变量,每一个线程执行的时候插入一个大的 List 集合,这里由于执行了500 次循环,也就是产生了500个线程,每一个线程都会依附一个 ThreadLocal变量:

public class ThreadLocalOOMDemo {
    private static final int THREAD_LOOP_SIZE = 500;
    private static final int MOCK_BIG_DATA_LOOP_SIZE = 10000;

private static ThreadLocal<List<User>> threadLocal = new ThreadLocal<>();

public static void main(String[] args) throws InterruptedException {
        ExecutorService executorService = Executors.newFixedThreadPool(THREAD_LOOP_SIZE);
        for (int i = 0; i < THREAD_LOOP_SIZE; i++) {
            executorService.execute(() -> {
                threadLocal.set(new ThreadLocalOOMDemo().addBigList());
                Thread t = Thread.currentThread();
                System.out.println(Thread.currentThread().getName());
                //threadLocal.remove(); //不取消注释的话就可能出现OOM
            });
            try {
                Thread.sleep(1000L);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        //executorService.shutdown();
    }

private List<User> addBigList() {
        List<User> params = new ArrayList<>(MOCK_BIG_DATA_LOOP_SIZE);
        for (int i = 0; i < MOCK_BIG_DATA_LOOP_SIZE; i++) {
            params.add(new User("Java后端技术全栈", "123456" + i, "man", i));
        }
        return params;
    }

class User {
        private String userName;
        private String password;
        private String sex;
        private int age;

public User(String userName, String password, String sex, int age) {
            this.userName = userName;
            this.password = password;
            this.sex = sex;
            this.age = age;
        }
    }
}

在设置IDEA或者eclipse中,设置 JVM 参数设置最大内存为 -Xmx64m,以便模拟出 OOM:

然后,运行上面的案例

从上面的案例中我们看到:线程池中的每一个线程使用完 ThreadLocal 对象之后再也不用,由于线程池中的线程不会退出,线程池中的线程的存在,同时 ThreadLocal 变量也会存在,占用内存!造成 OOM 溢出!

前面我们分析了Thread、ThreadLocal、ThreadLocalMap三者的关系

一个 Thread 中只有一个 ThreadLocalMap,一个 ThreadLocalMap 中可以有多个 ThreadLocal 对象,其中一个 ThreadLocal 对象对应一个 ThreadLocalMap 中一个的 Entry(也就是说:一个 Thread 可以依附有多个 ThreadLocal 对象)。

总结

每个 Thread 维护一个 ThreadLocalMap 映射表,这个映射表的 key 是 ThreadLocal实例本身,value 是真正需要存储的 Object。

ThreadLocal本身并不存储值,它只是作为一个 key 来让线程从 ThreadLocalMap 获取 value。

值得注意的是图中的虚线,表示 ThreadLocalMap 是使用 ThreadLocal 的弱引用作为 Key 的,弱引用的对象在 GC 时会被回收。

ThreadLocalMap使用 ThreadLocal的弱引用作为 key,如果一个 ThreadLocal没有外部强引用来引用它,那么系统 GC 的时候,这个 ThreadLocal势必会被回收,这样一来,ThreadLocalMap中就会出现 key 为 null 的 Entry,就没有办法访问这些 key 为 null 的 Entry 的 value。

如果当前线程再迟迟不结束的话,这些 key 为 null 的 Entry 的 value 就会一直存在一条强引用链:

Thread Ref -> Thread -> ThreaLocalMap -> Entry -> value

永远无法回收,造成内存泄漏。

注意:其实在ThreadLocalMap 的设计中已经考虑到这种情况,也加上了一些防护措施:ThreadLocal 的get(),set(),remove()的时候都会清除线程 ThreadLocalMap 里所有 key 为 null 的 value

但是如果上述代码中的这行代码

threadLocal.remove(); 

把注释放开,这不会抛出OOM

另外,网上很多文章都说这是由于弱引用导致的,个人认为不能把锅扔给弱引用,这和使用者有直接关系。如果使用得当是不会出现OOM的。

由于Thread中包含变量ThreadLocalMap,因此ThreadLocalMap与Thread的生命周期是一样长,如果都没有手动删除对应key,都会导致内存泄漏。

但是使用弱引用可以多一层保障:弱引用ThreadLocal不会内存泄漏,对应的value在下一次ThreadLocalMap调用set(),get(),remove()的时候会被清除。

因此,ThreadLocal内存泄漏的根源是:由于ThreadLocalMap的生命周期跟Thread一样长,如果没有手动删除对应key就会导致内存泄漏,而不是因为弱引用。

那为什么使用弱引用而不是强引用??

key 使用强引用

ThreadLocalMap的key为强引用回收ThreadLocal时,因为ThreadLocalMap还持有ThreadLocal的强引用,如果没有手动删除,ThreadLocal不会被回收,导致Entry内存泄漏。

key 使用弱引用

ThreadLocalMap的key为弱引用回收ThreadLocal时,由于ThreadLocalMap持有ThreadLocal的弱引用,即使没有手动删除,ThreadLocal也会被回收。当key为null,在下一次ThreadLocalMap调用set(),get(),remove()方法的时候会被清除value值。

下面是 福利

如果觉得有帮助,点个在看呗,(*^▽^*)

(0)

相关推荐

  • ThreadLocal为什么会内存泄漏

    转自https://www.jianshu.com/p/a1cd61fa22da thewindkee个人总结:如果线程使用线程池或者Thread长时间不会消亡,其内部的threadLocalMap也 ...

  • 快速掌握并发编程---深入学习Condition

    回复"000"获取大量电子书 目录 notify和waitConditionCondition使用案例生产者消费者测试类结果Condition源码分析await方法addCondi ...

  • 快速掌握并发编程---线程池的原理和实战

    池 上图是装水的池子--水池. 流行池化技术,那么到底什么是池化技术呢? 池化技术简单点来说,就是提前保存大量的资源,以备不时之需.在机器资源有限的情况下,使用池化技术可以大大的提高资源的利用率,提升 ...

  • 快速掌握并发编程---ArrayBlockingQueue 底层原理和实战

    背景 在JDK1.5的时候,在新增的Concurrent包中,BlockingQueue很好的解决了多线程中,如何高效安全"传输"数据的问题.通过这些高效并且线程安全的队列类,为我 ...

  • 中游体育:平蛙快速晋级波浪式蛙泳的学习技巧

    国外一般都是将蛙泳放到蝶泳之后进行教学,而国内由于普及型培训班的存在,所以大部分爱好者都是从平式蛙泳开始入门,当我们游到一定的阶段和水平,肯定不满足于现有的技术,都希望自己能像专业游泳运动员一样游出漂 ...

  • Java并发编程之内置锁(synchronized)

    简介 synchronized在JDK5.0的早期版本中是重量级锁,效率很低,但从JDK6.0开始,JDK在关键字synchronized上做了大量的优化,如偏向锁.轻量级锁等,使它的效率有了很大的提 ...

  • Java并发编程之线程的创建

    简介 线程是基本的调度单位,它被包含在进程之中,是进程中的实际运作单位,它本身是不会独立存在.一个进程至少有一个线程,进程中的多个线程共享进程的资源. Java中创建线程的方式有多种如继承Thread ...

  • Java并发编程实战(5)- 线程生命周期

    在这篇文章中,我们来聊一下线程的生命周期. 目录 概述 操作系统中的线程生命周期 Java中的线程生命周期 Java线程状态转换 运行状态和阻塞状态之间的转换 运行状态和无时限等待状态的切换 运行状态 ...

  • 学习编程和学习中西文打字的本质区别,在这里

    问:张老师好,我在使用fwrite函数的时候 发现数据块写到文件里 总是显示 ""烫烫",但是再用fread读出来显示到显示器上 格式是正确的,麻烦帮我看一下 谢谢! 代 ...

  • Java并发编程实战(4)- 死锁

    概述 在上一篇文章中,我们讨论了如何使用一个互斥锁去保护多个资源,以银行账户转账为例,当时给出的解决方法是基于Class对象创建互斥锁. 这样虽然解决了同步的问题,但是能在现实中使用吗?答案是不可以, ...