Range-Visual-Inertial Odometry: Scale Observability Without Excitation作者:Jeff Delaune,David S. Bayard,Roland Brockers主要研究点在于,基于EKF的距离-视觉-惯性里程计框架下无激励的尺度可观察性
摘要:对于大多数机器人应用来说,以恒定速度行驶是最有效的轨迹。不幸的是,如果没有加速度计激励,单目视觉惯性里程计 (VIO) 无法观察尺度并遭受严重的误差漂移。这是在 NASA 的 Ingenuity Mars Helicopter 导航系统中加入一维激光测距仪的主要动机。但是,Ingenuity 的简化方法仅限于平坦地形。当前的文献介绍了一种基于使用方面约束的新型距离测量更新模型。由此产生的 range-VIO 方法不再局限于平面场景,而是扩展到通用机器人应用程序的任意结构。一个重要的理论结果表明,对于零加速度或恒加速度运动,尺度不再位于可观察性矩阵的右零空间中。实际上,这意味着在恒速运动下可以观察到尺度,从而可以在任意地形上进行简单而稳健的自主操作。由于测距仪体积小,Range-VIO 保留了 VIO 的最小尺寸、重量和功率属性,并具有相似的运行时间。这些好处是根据代表常见空中机器人场景的真实飞行数据进行评估的。使用indoor stress data和全状态真值证明了稳健性。我们将我们的软件框架 xVIO 作为开源发布。1 引言单目视觉惯性里程计 (VIO) 是机器人技术中的一种流行方法,用于在封闭场景或 GPS 拒止环境下获得准确的度量状态估计。事实上,就尺寸、重量和功率而言,相机和惯性测量单元 (IMU) 构成了一个最小的传感器套件,这在大多数机器人上都很容易使用。但是,单目VIO只能在加速度不恒定的情况下观察运动尺度。这会导致在零或恒速轨迹下出现严重的误差漂移,这在机器人技术中很常见。对于必须依赖准确的 VIO 尺度估计进行控制的应用程序,此问题是关键问题。我们的工作受到Mars helicopters [1]、[2]的推动,但它一般适用于行星、军事和城市机器人;以及沿着笔直的走廊或隧道穿越室内或地下。我们新颖的距离-视觉-惯性里程计算法甚至可以在零或恒定加速度轨迹下观察尺度。它使用一维激光测距仪 (LRF),使传感器套件保持轻量化,同时有效地利用 VIO 稀疏结构估计。我们的主要贡献是:一个距离测量模型,可防止 VIO 标度漂移并适应任何场景结构;线性化距离- VIO 可观测性分析,显示尺度在没有激励的情况下是可观测的;在真实数据集上进行户外演示;使用全状态真值进行室内案例分析;一个开源的 C++ 实现。在 [1] 中,提出了一种 range-VIO 方法,该方法可以在相对平坦的地形上导航,同时支持演示 NASA 的 Ingenuity Mars Helicopter 所需的稳定静止悬停。当前的论文使用一种新方法扩展了这些 range-VIO 结果,该方法无需任何惯性激励即可观察 3D 地形的尺度。这种概括解决了机器人领域以及未来火星直升机的重要需求。当前论文是先前会议论文 [2] 的期刊扩展,该论文专门针对Mars helicopters应用。这包括在类似火星的地形上运行的候选航天硬件的实时演示。会议论文处理是非理论的,重点是获得概念验证的实证结果。当前的期刊论文推导出并分析了其理论可观察性属性。误差漂移减少是在城市航空机器人数据上评估的,该数据比火星环境更加复杂和 3D。通过全状态真值比较支持的室内测试证明了分面场景假设的稳健性。最后,我们公开源代码。