迈向未来: 肿瘤的精准治疗时代

前言

基因组和蛋白组学的技术突破不断驱动肿瘤生物学向前发展,癌症的前瞻性分子特征使医生能够实时确定每个患者肿瘤的基因组变化,并能够根据这些详细的数据选择个性化的治疗方案。虽然目前只有少数患者受益于精准靶向治疗,但随着该领域的进展,这一群体将继续增长。

精准肿瘤学的范围正在迅速扩大,以解决以前无法克服的靶标和罕见的基因组驱动因素,同时,以前未被认识到的生物和治疗的复杂性也正在出现。如何进一步扩大基因组驱动肿瘤学的益处,包括提出改进药物设计的策略,更细致的患者选择,以及设计下一代基因组驱动的临床试验,将有助于加速我们对肿瘤生物学的理解,并持续改善患者预后。

优化药物开发

目前,基于精准肿瘤学的新一代疗法有助于阐明最佳分子靶向药物的许多关键特性。其中最重要的因素包括治疗指数、靶向选择性和耐药性。

治疗指数

一个良好的治疗窗口以允许最佳剂量,是治疗成功的关键。治疗指数是药物选择性、靶点特征和脱靶毒性综合考量的结果。

例如,EGFR抑制剂的治疗窗口因靶向激活突变与野生型EGFR的选择性不同而有所不同。许多对一代和第二代EGFR抑制剂(如erlotinib、gefitinib和afatinib)反应良好的患者,都有L858R突变和外显子19缺失,这些缺失增加了受体二聚并降低ATP结合,与野生型EGFR相比,抑制剂的亲和力增强。

相比之下,这些药物在EGFR外显子20插入中具有较差的治疗指数,因为对外显子20突变体的抑制作用不如对野生型EGFR的抑制,限制了这类药物的耐受性。

靶标选择性

针对靶标的选择性可以降低脱靶毒性,并允许更有效的药物活性,从而提高疗效。

例如,在约2%的肺腺癌和高达20%的甲状腺乳头状癌中发现活化RET改变,而多重激酶抑制剂(MKI)会有一定程度的RET抑制,如lenvatinib、vandetanib、cabozatinib和ponatinib,在RET突变的肿瘤中表现出有限的临床活性。然而,所有这些药物都表现出更强的非靶向抑制作用,典型的是VEGFR(KDR),这决定了它们的剂量限制毒性,从而无法达到最大的RET阻断。

相反,选择性RET抑制剂,包括selpercatinib(LOXO-292)和pralsetinib(BLU-667),已经被开发出来,允许有效和持续的靶向抑制,与MKIs相比,已证明具有显著的疗效和良好的安全性。

所以,对单个癌症的基因组驱动因素的进一步了解,加上结构生物学的进展,使得能够开发出合理的、适合于特定目的的药物,这种选择性抑制剂的产生对于优化耐受性和最大化治疗效果至关重要。

耐药性

在设计药物时,应考虑原发性和获得性耐药的潜在机制。考虑因素包括由药物渗透性引起的耐药性以及继发于分子改变的耐药性。

对于脑转移常见的癌症,包括NSCLC、乳腺癌和黑色素瘤,确保针对这些癌症关键基因组改变的药物具有足够的中枢神经系统(CNS)渗透性已成为一个关键设计参数。虽然第一代ALK抑制剂crizotinib可实现高初始全身疾病控制率,但脑部渗透性差导致多达60%的患者在接受治疗时出现CNS进展。对新一代ALK抑制剂的前瞻性评估表明,大脑内的疾病控制显著改善,最终有助于提高无进展生存率和总生存率。

除了由药物渗透性决定的耐药性外,药物开发越来越多地考虑到靶向获得性耐药性的预测机制。例如,连续几代的ALK抑制剂被专门设计针对突变来维持结合效力。

药物开发的新领域

异构体和突变选择性抑制剂

认识到更多的选择性治疗往往具有更好的疗效和耐受性,一些策略被用来更具体和直接地抑制致癌驱动因素,包括开发异构体和突变选择性抑制剂。

例如,PI3K途径是癌症中最常见的突变途径之一,但早期用pan-PI3K抑制剂仅显示出有限的疗效。相比之下,亚型选择性PI3K抑制剂相对于pan-PI3K和双PI3K/mTOR抑制剂显示出更好的疗效。此外,异构体特异性抑制剂可将归因于“脱靶”异构体的毒性降至最低。

近年来,药物的选择性已经超越了异构体的选择性,向单个突变等位基因发展。这种选择性允许抑制突变的致癌蛋白,同时保留野生型蛋白。

KRAS是癌症中最常见的突变癌基因之一,但尽管它被认为是一个关键的致癌驱动因素,但一直以来它被认为是不可成药的,部分原因是缺乏可靶向的结合位点。然而,最新的设计允许与KRAS G12C的突变半胱氨酸发生反应,形成不可逆的结合并将蛋白质锁定在其非活性结合状态。在缺乏这种突变半胱氨酸的情况下,这些共价抑制剂不会与野生型KRAS发生反应,从而保护正常组织。KRAS G12C抑制剂I期试验的早期结果证明了这种靶向突变的有效性和安全性。

抗体偶联药物(ADC)

另一种提高治疗指数的方法是使用抗体偶联药物。通过将细胞毒性有效载荷直接连接到靶向抗体,ADC被设计为可扩展传统细胞毒性药物的治疗窗口。

目前,已有多个此类药物开始在临床上得到应用。例如,ADC药物trastuzumab deruxtecan(DS8201)是由与细胞毒性拓扑异构酶I抑制剂deruxtecan偶联到抗HER2抗体曲妥珠单抗组成。这种药物在HER2驱动的癌症中表现出前所未有的活性,包括HER2+的乳腺癌和胃癌,以及在HER2低表达的乳腺癌中也具有很好的活性,而在这类病人, HER2靶向治疗在很大程度上往往是无效的。确定适合ADC开发的肿瘤特异性靶点并优化这些工程药物的安全性将是其进一步开发和利用的关键。

变构抑制剂

传统上,大多数小分子抑制剂都以ATP结合位点为靶点。最近,基于结构的药物设计、具有动态模拟的计算化学以及高通量药物筛选方法的进展共同促成了非ATP竞争性抑制剂的开发,这些抑制剂结合了新的变构位点。

这些变构抑制剂可克服由已验证靶点活性位点突变介导的靶点耐药,并可抑制先前不可成药的蛋白。例如,靶向BCR-ABL融合阳性的变构抑制剂asciminib(ABL001)已经进入临床,并在已使用多种ATP竞争性抑制剂治疗的顽固性耐药AML患者中证明了药效。另一个正在积极探索的方法是将选择性ATP竞争性抑制剂和变构抑制剂联合应用,这可能共同延缓甚至完全阻止获得性耐药性的发展。

变构抑制剂也可以使治疗针对以前无法靶向的目标。例如,磷酸酶SHP2与SOS1一起在促成核苷酸交换方面发挥重要作用,使RAS在其非活性GDP结合态和激活GTP结合态之间循环。磷酸酶以前被认为是不具吸引力的药物靶点,但变构抑制剂可以改变SHP2的构象并消除其活性,这在临床前动物模型中已证明了药效,目前,一些临床试验正在进行中。

蛋白水解靶向嵌合体(PROTACS)

另一种新出现的靶向关键癌症驱动因子的方法是PROTACS,这种方法通常使用双功能分子,使目标蛋白接近泛素连接酶,最终导致目标蛋白降解。

这项技术在癌症治疗中的应用还处于起步阶段,与关键癌基因的变构抑制剂一样,这种技术可能会克服由已验证靶点活性位点突变介导的靶点耐药,并可抑制先前不可成药的蛋白。许多癌症的关键驱动因素,包括转录因子,都不能被目前可用的治疗方法靶向,要么是因为它们不在细胞表面表达,因此抗体无法接近,要么是因为它们缺乏小分子抑制剂可以附着的结合囊。PROTACs可以克服这些挑战,通过同时结合靶点和E3泛素连接酶来利用细胞的内源性蛋白质降解机制,促进蛋白质降解。

ARV-110是第一个进入I期临床试验的药物,它将前列腺癌患者的E3泛素连接酶与雄激素受体联系起来(NCT03888612)。这种降低细胞蛋白水平的新方法可以有效地靶向许多以前不可治疗的靶点。

蛋白质复性

通过塑造蛋白质构象来恢复突变蛋白质的自然功能,从而重新启用失去的活性,目前,这类小分子药物正在得到开发。

这一策略已经在囊性纤维化的治疗中被证明是成功的,囊性纤维化是一种非肿瘤遗传性疾病,其特征是编码囊性纤维化跨膜传导调节蛋白(CFTR)的基因突变导致粘液分泌过多。通过重新使CFTR到达细胞表面并发挥与野生型蛋白类似的功能,蛋白质复性药物减少了囊性纤维化的临床后遗症。

蛋白质复性在癌症中的应用目前正在探索中,它代表了靶向突变肿瘤抑制因子的一种新方法。肿瘤抑制因子TP53的功能缺失突变是癌症中最常见的突变。然而,目前还没有专门针对TP53突变癌症的治疗方法,通过蛋白质复性恢复突变体TP53活性的小分子正在研发中。除了扩大可能的药物靶点的数量外,这种方法还提供了额外的益处,比如降低了毒性。

优化药物的使用

为了最大限度地发挥基因组驱动肿瘤学的优势,必须优化现有疗法的使用。合理的治疗顺序和开发协同和可耐受的组合,在患者治疗过程中最适当的时间给予新的治疗可能会提高疗效。

尽早应用以减少耐药性

新的治疗方法通常是在那些从现有标准治疗中获得最大利益的疾病患者身上进行测试。然而,使用EGFR和ALK抑制剂的经验表明,在出现耐药性之前,尽早应用我们最好的药物可能会改善疗效。

使用第一代和第二代EGFR酪氨酸激酶抑制剂(TKIs)治疗的EGFR突变NSCLC患者中,超过50%获得EGFR T790M突变。Osimertinib是为了克服T790M突变而开发的,最初是在先前TKIs进展的患者中进行的。

然而,最近的证据表明,与第一代EGFR TKIs治疗的患者相比,当患者接受osimertinib作为一线治疗时,有效地防止T790M介导的耐药,总生存率显著增加。因此,药物开发模式应该鼓励对下一代抑制剂进行早期患者测试。

辅助和新辅助治疗

大多数精准治疗是针对复发或转移性癌症患者的,这类患者的目标往往是延长生命,并不指望治愈。而恰恰相反,精准治疗的最大机会可能是早期疾病患者,有效的治疗有可能提高治愈率。

在HER2阳性乳腺癌患者中,在化疗中加入HER2单克隆抗体曲妥珠单抗可显著提高10年生存率。辅助靶向治疗也是3期BRAF V600E突变黑色素瘤和KIT表达胃肠道间质瘤患者的标准治疗,基于3期试验已证明了无病生存期的益处。

对于具有高应答率的靶向治疗,新辅助治疗可用于将不能切除的肿瘤转化为可手术切除的疾病,从而提供治愈的机会。例如,尽管larotrectinib被开发用于对标准治疗无反应的晚期TRK融合阳性癌症,但新辅助larotrectinib已成功用于儿童肉瘤患者以缩小肿瘤并允许完全切除。虽然需要进一步的研究来确定这种新辅助方法的应用场合,但很明显,早期使用有效药物可能会显著改善一部分患者的预后。

联合治疗

联合治疗可用于提高疗效、降低毒性和/或防止耐药性的出现。在BRAF V600突变型黑色素瘤中,与BRAF单独抑制相比,BRAF和MEK联合抑制可延长生存期并降低皮肤毒性。

除了预防原发性耐药外,合理的组合可以有效治疗继发性耐药。随着进展后活检变得越来越普遍,越来越多的报道出现了脱靶耐药性。当获得性改变本身具有靶向性时,测序数据为同时针对主要和获得性驱动因素的合理治疗组合提供了机会。例如,在TATTON临床试验中,对获得性MET扩增的EGFR突变NSCLC患者联合应用osimertinib和MET抑制剂savolitinib治疗。Savolitinib能够恢复对osimertinib的敏感性。

小结

肿瘤的分子特征分析已经使我们能够开发出成功的靶向治疗,造福了无数的患者。然而,分子定向研究也强调了预测哪些患者可能对治疗作出反应的复杂性,此外,许多基因组驱动因素仍然“不可成药”,或由于目前治疗的耐受性而无法有效地靶向。因此,我们必须从以前的成功和失败中吸取教训,以优化药物设计,开发创新的新治疗方法,并且持续改进患者与治疗的匹配方式,实现更有效的精准靶向治疗,开创肿瘤精准治疗的新时代。

参考文献:

1.  Towards a more precise future for oncology. Cancer Cell. 2020 Apr 13; 37(4): 431–442.

(0)

相关推荐