理解Spark SQL(三)—— Spark SQL程序举例

上一篇说到,在Spark 2.x当中,实际上SQLContext和HiveContext是过时的,相反是采用SparkSession对象的sql函数来操作SQL语句的。使用这个函数执行SQL语句前需要先调用DataFrame的createOrReplaceTempView注册一个临时表,所以关键是先要将RDD转换成DataFrame。实际上,在Spark中实际声明了

type DataFrame = Dataset[Row]

所以,DataFrame是Dataset[Row]的别名。RDD是提供面向低层次的API,而DataFrame/Dataset提供面向高层次的API(适合于SQL等面向结构化数据的场合)。

下面提供一些Spark SQL程序的例子。

例子一:SparkSQLExam.scala

1 package bruce.bigdata.spark.example 2  3 import org.apache.spark.sql.Row 4 import org.apache.spark.sql.SparkSession 5 import org.apache.spark.sql.types._ 6  7 object SparkSQLExam { 8  9     case class offices(office:Int,city:String,region:String,mgr:Int,target:Double,sales:Double)10     11     def main(args: Array[String]) {12 13         val spark = SparkSession14           .builder15           .appName("SparkSQLExam")16           .getOrCreate()17         18         runSparkSQLExam1(spark)19         runSparkSQLExam2(spark)20         21         spark.stop()22     23     }24     25     26     private def runSparkSQLExam1(spark: SparkSession): Unit = {27     28         import spark.implicits._29         30         val rddOffices=spark.sparkContext.textFile("/user/hive/warehouse/orderdb.db/offices/offices.txt").map(_.split("\t")).map(p=>offices(p(0).trim.toInt,p(1),p(2),p(3).trim.toInt,p(4).trim.toDouble,p(5).trim.toDouble))31         val officesDataFrame = spark.createDataFrame(rddOffices)32         33         officesDataFrame.createOrReplaceTempView("offices")34         spark.sql("select city from offices where region='Eastern'").map(t=>"City: " + t(0)).collect.foreach(println)35         36     37     }38     39     private def runSparkSQLExam2(spark: SparkSession): Unit = {40     41          import spark.implicits._42          import org.apache.spark.sql._43          import org.apache.spark.sql.types._44         45          val schema = new StructType(Array(StructField("office", IntegerType, false), StructField("city", StringType, false), StructField("region", StringType, false), StructField("mgr", IntegerType, true), StructField("target", DoubleType, true), StructField("sales", DoubleType, false)))46          val rowRDD = spark.sparkContext.textFile("/user/hive/warehouse/orderdb.db/offices/offices.txt").map(_.split("\t")).map(p => Row(p(0).trim.toInt,p(1),p(2),p(3).trim.toInt,p(4).trim.toDouble,p(5).trim.toDouble))47          val dataFrame = spark.createDataFrame(rowRDD, schema)48          49          dataFrame.createOrReplaceTempView("offices2")        50          spark.sql("select city from offices2 where region='Western'").map(t=>"City: " + t(0)).collect.foreach(println)51         52     }53     54 }

使用下面的命令进行编译:

[root@BruceCentOS4 scala]# scalac SparkSQLExam.scala

在编译之前,需要在CLASSPATH中增加路径:

export CLASSPATH=$CLASSPATH:$SPARK_HOME/jars/*:$(/opt/hadoop/bin/hadoop classpath)

然后打包成jar文件:

[root@BruceCentOS4 scala]# jar -cvf spark_exam_scala.jar bruce

然后通过spark-submit提交程序到yarn集群执行,为了方便从客户端查看结果,这里采用yarn cient模式运行。

[root@BruceCentOS4 scala]# $SPARK_HOME/bin/spark-submit --class bruce.bigdata.spark.example.SparkSQLExam --master yarn --deploy-mode client spark_exam_scala.jar

运行结果截图:

例子二:SparkSQLExam.scala(需要启动hive metastore)

1 package  bruce.bigdata.spark.example 2  3 import org.apache.spark.sql.{SaveMode, SparkSession} 4  5 object SparkHiveExam { 6  7     def main(args: Array[String]) { 8          9         val spark = SparkSession10           .builder()11           .appName("Spark Hive Exam")12           .config("spark.sql.warehouse.dir", "/user/hive/warehouse")13           .enableHiveSupport()14           .getOrCreate()15        16         import spark.implicits._17         18         //使用hql查看hive数据19         spark.sql("show databases").collect.foreach(println)20         spark.sql("use orderdb")21         spark.sql("show tables").collect.foreach(println)22         spark.sql("select city from offices where region='Eastern'").map(t=>"City: " + t(0)).collect.foreach(println)23         24         //将hql查询出的数据保存到另外一张新建的hive表25         //找出订单金额超过1万美元的产品26         spark.sql("""create table products_high_sales(mfr_id string,product_id string,description string) 27                    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n' STORED AS TEXTFILE""")28         spark.sql("""select mfr_id,product_id,description29                    from products a inner join orders b30                    on a.mfr_id=b.mfr and a.product_id=b.product31                    where b.amount>10000""").write.mode(SaveMode.Overwrite).saveAsTable("products_high_sales")32         33         //将HDFS文件数据导入到hive表中            34         spark.sql("""CREATE TABLE IF NOT EXISTS offices2 (office int,city string,region string,mgr int,target double,sales double ) 35                    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n' STORED AS TEXTFILE""")36         spark.sql("LOAD DATA INPATH '/user/hive/warehouse/orderdb.db/offices/offices.txt' INTO TABLE offices2")37         38         spark.stop()39     }40 }

使用下面的命令进行编译:

[root@BruceCentOS4 scala]# scalac SparkHiveExam.scala

使用下面的命令打包:

[root@BruceCentOS4 scala]# jar -cvf spark_exam_scala.jar bruce

使用下面的命令运行:

[root@BruceCentOS4 scala]# $SPARK_HOME/bin/spark-submit --class bruce.bigdata.spark.example.SparkHiveExam --master yarn --deploy-mode client spark_exam_scala.jar

程序运行结果:

另外上述程序运行后,hive中多了2张表:

例子三:spark_sql_exam.py

1 from __future__ import print_function 2  3 from pyspark.sql import SparkSession 4 from pyspark.sql.types import * 5  6  7 if __name__ == "__main__": 8     spark = SparkSession  9         .builder 10         .appName("Python Spark SQL exam") 11         .config("spark.some.config.option", "some-value") 12         .getOrCreate()13 14     schema = StructType([StructField("office", IntegerType(), False), StructField("city", StringType(), False), 15         StructField("region", StringType(), False), StructField("mgr", IntegerType(), True), 16         StructField("Target", DoubleType(), True), StructField("sales", DoubleType(), False)])17         18     rowRDD = spark.sparkContext.textFile("/user/hive/warehouse/orderdb.db/offices/offices.txt").map(lambda p: p.split("\t")) 19         .map(lambda p: (int(p[0].strip()), p[1], p[2], int(p[3].strip()), float(p[4].strip()), float(p[5].strip())))20             21     dataFrame = spark.createDataFrame(rowRDD, schema)22     dataFrame.createOrReplaceTempView("offices")23     spark.sql("select city from offices where region='Eastern'").show()24     25     spark.stop()

执行命令运行程序:

[root@BruceCentOS4 spark]# $SPARK_HOME/bin/spark-submit --master yarn --deploy-mode client spark_sql_exam.py

程序运行结果:

例子四:JavaSparkSQLExam.java

1 package bruce.bigdata.spark.example; 2  3 import java.util.ArrayList; 4 import java.util.List; 5  6 import org.apache.spark.api.java.JavaRDD; 7 import org.apache.spark.api.java.function.Function; 8 import org.apache.spark.api.java.function.MapFunction; 9 import org.apache.spark.sql.Dataset;10 import org.apache.spark.sql.Row;11 import org.apache.spark.sql.RowFactory;12 import org.apache.spark.sql.SparkSession;13 import org.apache.spark.sql.types.DataTypes;14 import org.apache.spark.sql.types.StructField;15 import org.apache.spark.sql.types.StructType;16 import org.apache.spark.sql.AnalysisException;17 18 19 public class JavaSparkSQLExam {20     public static void main(String[] args) throws AnalysisException {21         SparkSession spark = SparkSession22           .builder()23           .appName("Java Spark SQL exam")24           .config("spark.some.config.option", "some-value")25           .getOrCreate();    26         27         List<StructField> fields = new ArrayList<>();28         fields.add(DataTypes.createStructField("office", DataTypes.IntegerType, false));29         fields.add(DataTypes.createStructField("city", DataTypes.StringType, false));30         fields.add(DataTypes.createStructField("region", DataTypes.StringType, false));31         fields.add(DataTypes.createStructField("mgr", DataTypes.IntegerType, true));32         fields.add(DataTypes.createStructField("target", DataTypes.DoubleType, true));33         fields.add(DataTypes.createStructField("sales", DataTypes.DoubleType, false));34         35         StructType schema = DataTypes.createStructType(fields);36         37         38         JavaRDD<String> officesRDD = spark.sparkContext()39           .textFile("/user/hive/warehouse/orderdb.db/offices/offices.txt", 1)40           .toJavaRDD();41         42         JavaRDD<Row> rowRDD = officesRDD.map((Function<String, Row>) record -> {43           String[] attributes = record.split("\t");44           return RowFactory.create(Integer.valueOf(attributes[0].trim()), attributes[1], attributes[2], Integer.valueOf(attributes[3].trim()), Double.valueOf(attributes[4].trim()), Double.valueOf(attributes[5].trim()));45         });46         47         Dataset<Row> dataFrame = spark.createDataFrame(rowRDD, schema);48         49         dataFrame.createOrReplaceTempView("offices");50         Dataset<Row> results = spark.sql("select city from offices where region='Eastern'");51         results.collectAsList().forEach(r -> System.out.println(r));52         53         spark.stop();54     }55 }

编译打包后通过如下命令执行:

[root@BruceCentOS4 spark]# $SPARK_HOME/bin/spark-submit --class bruce.bigdata.spark.example.JavaSparkSQLExam --master yarn --deploy-mode client spark_exam_java.jar

运行结果:

上面是一些关于Spark SQL程序的一些例子,分别采用了Scala/Python/Java来编写的。另外除了这三种语言,Spark还支持R语言编写程序,因为我自己也不熟悉,就不举例了。不管用什么语言,其实API都是基本一致的,主要是采用DataFrame和Dataset的高层次API来调用和执行SQL。使用这些API,可以轻松的将结构化数据转化成SQL来操作,同时也能够方便的操作Hive中的数据。

(0)

相关推荐