《測圓海鏡》之髙差、旁差、極雙差等式﹝諸差2﹞
《測圓海鏡》之髙差、旁差、極雙差等式﹝諸差2﹞
上傳書齋名:瀟湘館112 Xiāo XiāngGuǎn 112
何世強 Ho Sai Keung
提要:《測圓海鏡》之“圓城圖式”含十四勾股形,連同原有之大勾股形共十五勾股形。本文著重諸勾股形有關三邊之差之等式,例如髙差、旁差、極雙差、平差、虛差、虛雙差、明雙差等。
關鍵詞:髙差、旁差、極雙差、平差、虛差
《測圓海鏡》乃金‧李冶所撰,書成於 1248 年,時為南宋淳祐八年。該書卷一“圓城圖式”主要討論與十五勾股形相關之等式,本文介紹其部分等式並作出証明。
本文所引用之勾股式源自“圓城圖式”之十五勾股形,a1、b1、c1 乃最大勾股形天地乾之勾、股及弦長。故 a1、b1、c1 又稱為大勾﹝地乾﹞、大股﹝天乾﹞及大弦﹝天地﹞。
《測圓海鏡》涉及一系列之勾股恆等式,所有恆等式皆與十五勾股形有關。十五勾股形中最大者為天地乾,其三邊勾股弦分別以 a1、b1、c1 表之,其餘十四勾股形三邊勾股弦則分別以 ai、bi、ci 表之,其中 1 < i ≦ 15。但 ai、bi、ci 均可以 a1、b1、c1 表之,此乃《測圓海鏡》之精髓。注意勾股定理成立,即 ai2 + bi2 = ci2。
有關以 a1、b1、c1 表 ai、bi、ci 之式可參閱筆者另文〈《測圓海鏡》“圓城圖式”之十二勾股弦算法〉。
本文著重十五勾股形有關三邊之差之等式。
以下左為“圓城圖式”右為“圓城圖式十五句股形圖”。
注意圓徑為 a1 + b1 – c1,見上圖之東南西北圓。圓徑乃十五勾股形三邊重要因子之一,其他因子為最大勾股形之勾股較、勾弦較及股弘較。
本文主要談及十五勾股形有關三邊相差之等式,其中部分等式曾在“五和五較”等式中出現,可參閱筆者相關之文章。
注意等式 (c1 – b1)(c1 – a1) =
(a1 + b1 – c1)2。
以下為有關諸差之式:
髙差內減平差為旁差。邊差內減底差亦同上。明差內減
差亦同上。大差差內減小差差為二旁差。黃廣差內減黃長差亦同上。
極雙差即明
二弦共。內加虛雙差即明
二和共。內減虛雙差即明雙差
雙差共也。內加旁差即極弦內少個虛弦旁差差。內減旁差即虛和也。內加虛差即極弦內少二
股。內減虛差則極弦內少二明勾也。
以下為各條目之証明:
髙差內減平差為旁差。
“髙差”指髙弦﹝在勾股形天日旦 6 或日山朱7﹞上勾股較。
髙弦上勾股較= b6 – a6 =
(a1 + b1 – c1) –
(a1 + b1 – c1)
=
(a1 + b1 – c1)(
– 1)
=
(a1 + b1 – c1)(b1 – a1) 。
“平差”指平弦﹝在勾股形月川青 8 或川地夕 9﹞上勾股較。
平弦上勾股較 = b8– a8 =
(a1 + b1 – c1) –
(a1 + b1 – c1)
=
(a1 + b1 – c1)(1 –
)
=
(a1 + b1 – c1)(b1 – a1)。
髙差內減平差﹝以髙差為被減數﹞,即:
(a1 + b1 – c1)(b1 – a1) –
(a1 + b1 – c1)(b1 – a1)
=
(a1 + b1 – c1)(b1 – a1)[
–
]
=
(a1 + b1 – c1)(b1 – a1)(b1 – a1)
=
(a1 + b1 – c1)(b1 – a1)2。
------------------------------------------
“旁差”又名“傍差”,據《測圓海鏡》所云,明
二差較名為傍差。“差”指勾股較,“明差”指明弦上之勾股較,其餘類推。
明差 = b14 – a14 =
(c1 – a1)(b1 – c1 + a1) –
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)( a1 + b1 – c1)[
–
]。
差 = b15 – a15 =
(c1 – b1)(a1 – c1 + b1) –
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)( a1 + b1 – c1) [
–
]。
二差較 = 明差 –
差
=
(c1 – a1)( a1 + b1 – c1)[
–
] –
(c1 – b1)( a1 + b1 – c1) [
–
]
=
( a1 +b1 – c1)[
–
][(c1 – a1) – (c1 – b1)]
=
(a1 + b1 – c1)(b1 – a1)
=
(a1 + b1 – c1) 。
----------------------------------
以上之式是為“旁差”。所以髙差內減平差 = 旁差。
邊差內減底差亦同上。
“邊差”指“邊弦上勾股較”,“邊弦上勾股較”指 b2 – a2﹝在勾股形天川西 2﹞。
b2 – a2 =
(c1 + b1 – a1) –
(c1 + b1 – a1)
=
(c1 + b1 – a1) (1 –
)
=
(c1 + b1 – a1)(b1 – a1) 。
“底差”指“底弦上勾股較”,而“底弦上勾股較”指 b3 – a3﹝在勾股形日地北 3﹞。
b3 – a3 =
(a1 – b1 + c1) –
(a1 – b1 + c1)
=
(a1 – b1 + c1)(
– 1)
=
(a1 – b1 + c1)(b1 – a1) 。
邊差內減底差,即:
(c1 + b1 – a1)(b1 – a1) –
(a1 – b1 + c1)(b1 – a1)
=
(b1 – a1)[
(c1 + b1 – a1) –
(a1 – b1 + c1)]
=
(b1 – a1)[a1(c1 + b1 – a1) – b1(a1 – b1 + c1)]
=
(b1 – a1)[a1c1 + a1b1 – a12 – b1a1 + b12 – b1c1]
=
(b1 – a1)[a1c1 – a12+ b12 – b1c1]
=
(b1 – a1)[a1c1 – a12+ b12 – b1c1]
=
(b1 – a1)[(b1 – a1)(b1 + a1) – c1(b1 – a1)]
=
(b1 – a1)(b1 – a1)[(b1 + a1) – c1]
=
(b1 – a1)2(b1 + a1 – c1) 。
比較答案兩式,可知相等,所以邊差內減底差 = 旁差。
明差內減
差亦同上。
明
二差較名傍差,見前文。明
二差較即明差內減
差,明差內減
差乃《測圓海鏡》旁差之定義。
大差差內減小差差為二旁差。
“大差差”指大差﹝在勾股形天月坤 10﹞上之勾股較,勾股較即勾股差。
大差上勾股差 = b10 – a10 = (c1 – a1) –
(c1 – a1)
= (c1 – a1)(1 –
)
=
(c1 – a1)(b1 – a1) 。
“小差差”指小差﹝在勾股形山地艮 11﹞上之勾股較。
小差上勾股較 = b11– a11 = – (c1 – b1) +
(c1 – b1)
= (c1 – b1)(
– 1)
=
(c1 – b1)(b1 – a1) 。
大差差內減小差差,即:
(c1 – a1)(b1 – a1) –
(c1 – b1)(b1 – a1)
= (b1 – a1)[
(c1 – a1) –
(c1 – b1)]
=
(b1 – a1)[ a1(c1 – a1) – b1(c1 – b1)]
=
(b1 – a1)(a1c1 – a12 –b1c1 + b12)
=
(b1 – a1)[(b1 – a1)(b1 + a1) – c1(b1 – a1)]
=
(b1 – a1)(b1 – a1)[(b1 + a1) – c1]
=
(b1 – a1)2(b1 + a1 – c1)。
二旁差= 2 ×
(b1 – a1)2(b1 + a1 – c1) =
(b1 – a1)2(b1 + a1 – c1)。
比較兩式可知相同,所以大差差內減小差差 = 二旁差。
黃廣差內減黃長差亦同上。
黃廣差﹝在勾股形天山金 4﹞指黃廣弦之勾股較。
金山勾 ﹝又稱黃廣勾﹞:a4 =
(a1 + b1 – c1) × 2 = a1 + b1 – c1。
天金股﹝又稱黃廣股﹞:b4 =
=
(a1 + b1 – c1) 。
黃廣勾股較 = b4 – a4 =
(a1 + b1 – c1) – (a1 + b1 – c1)
= (a1 + b1 – c1)(
– 1)
=
(a1 + b1 – c1)(b1 – a1) 。
黃長差﹝在勾股形月地泉 5﹞指黃長弦之勾股較。
月泉股﹝又稱黃長股﹞:b5 =
(a1 + b1 – c1) × 2 = a1 + b1 – c1。
泉地勾﹝又稱黃長勾﹞:a5 =
=
(a1 + b1 – c1) 。
黃長勾股較 = b5 – a5 = (a1 + b1 – c1) –
(a1 + b1 – c1)
= (a1 + b1 – c1)(1 –
)
=
(a1 + b1 – c1)(b1 – a1) 。
黃廣差內減黃長差,即:
(a1 + b1 – c1)(b1 – a1) –
(a1 + b1 – c1)(b1 – a1)
= (a1 + b1 – c1)(b1 – a1)[
–
]
=
(a1 + b1 – c1)(b1 – a1)(b1 – a1)
=
(a1 + b1 – c1)(b1 – a1)2。
所以黃廣差內減黃長差 = 二旁差﹝見前式﹞。
極雙差即明
二弦共。
所謂“極雙差”乃指日心股之勾弦差及股弦差之和,是為“雙差”。
已知極弦:c12 =
(a1 + b1 – c1)。極股:b12 =
(a1 + b1 – c1)。
極勾:a12 =
(a1 + b1 – c1)。
以下為勾弦差及股弦差:
c12 – a12 =
(a1 + b1 – c1) –
(a1 + b1 – c1) =
(a1 + b1 – c1)[
– 1],
c12 – b12 =
(a1 + b1 – c1) –
(a1 + b1 – c1) =
(a1 + b1 – c1)[
– 1],
極雙差 = 即以上兩式之和,即:
(a1 + b1 – c1)[
– 1] +
(a1 + b1 – c1)[
– 1]
=
(a1 + b1 – c1)(c1 – a1) +
(a1 + b1 – c1)(c1 – b1)
=
(a1 + b1 – c1)(c1 – a1 + c1 – b1)
=
(a1 + b1 – c1)(2c1 – a1 – b1)。
日月為明弦﹝簡稱明弦﹞:c14 =
(c1 – a1)(b1 – c1 + a1)。
山川
弦﹝簡稱
弦﹞:c15 =
(c1 – b1)(a1 – c1 + b1)。
明
二弦共 = c14 + c15。
c14 + c15 =
(c1 – a1)(b1 – c1 + a1) +
(c1 – b1)(a1 – c1 + b1)
=
(b1 – c1 + a1)[ (c1 – a1) + (c1 – b1)]
=
(a1 + b1 – c1)(2c1 – a1 – b1)。
比較答案兩式,可知相等,所以極雙差 = 明
二弦共。
內加虛雙差即明
二和共。
“虛雙差”即太虛勾弦較與太虛股弦較之和﹝在勾股形月山泛 13﹞。
已知太虛勾弦較 = c13 – a13 =
(c1 – b1)(c1 – a1) –
(c1 – b1)(c1 – a1)
=
(c1 – b1)(c1 – a1)[
– 1]
=
(c1 – b1)(c1 – a1)(c1 – a1)
=
(c1 – b1)(c1 – a1)2。
太虛股弦較= c13 – b13 =
(c1 – b1)(c1 – a1) –
(c1 – b1)(c1 – a1)
=
(c1 – b1)(c1 – a1)[
– 1]
=
(c1 – a1)(c1 – b1)(c1 – b1)
=
(c1 – a1)(c1 – b1)2。
所以虛雙差 =
(c1 – b1)(c1 – a1)2 +
(c1 – a1)(c1 – b1)2
=
(c1 – a1)(c1 – b1)[(c1 – a1) + (c1 – b1)]
=
(c1 – a1)(c1 – b1)(2c1 – a1 – b1)
=
(a1 + b1 – c1)2(2c1 – a1 – b1)。
所以極雙差 +虛雙差,即:
(a1 + b1 – c1)(2c1 – a1 – b1) +
(a1 + b1 – c1)2(2c1 – a1 – b1)
=
(a1 + b1 – c1)(2c1 – a1 – b1)[c1 + a1 + b1 – c1]
=
(a1 + b1 – c1)(2c1 – a1 – b1)(a1 + b1) 。
又已知“明和”即明弦勾股和 = b14 +a14﹝在勾股形日月南 14﹞,即:
b14 + a14=
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
+
]
=
(c1 – a1)(b1 – c1 + a1)(a1 + b1) 。
“
和”即
弦上勾股和 = b15 +a15 ﹝在勾股形山川東 15﹞,即:
b15 + a15 =
(c1 – b1)(a1 – c1 + b1) +
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)(a1 – c1 + b1)(
+
)
=
(c1 – b1)(a1 – c1 + b1)(b1 + a1) 。
明
二和共,即:
(c1 – a1)(b1 – c1 + a1)(a1 + b1) +
(c1 – b1)(a1 – c1 + b1)(b1 + a1)
=
(b1 – c1 + a1)(a1 + b1)[ (c1 – a1) + (c1 – b1)]
=
(a1 + b1 – c1)(2c1 – a1 – b1)(a1 + b1) 。
比較兩式可知相同,所以極雙差內加虛雙差 = 明
二和共。
內減虛雙差即明雙差
雙差共也。
本條指極雙差內減虛雙差。
極雙差– 虛雙差,即:
(a1 + b1 – c1)(2c1 – a1 – b1) –
(a1 + b1 – c1)2(2c1 – a1 – b1)
=
(a1 + b1 – c1)(2c1 – a1 – b1)[c1 – a1 – b1 + c1]
=
(a1 + b1 – c1)(2c1 – a1 – b1)2。
明弦﹝在勾股形日月南 14﹞勾弦較=c14 – a14。
c14 – a14 =
(c1 – a1)(b1 – c1 + a1) –
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
– 1]
=
(b1 – c1 + a1)(c1 – a1)(c1 – a1)
=
(b1 – c1 + a1) (c1 – a1)2。
明弦股弦較 = c14 – b14
=
(c1 – a1)(b1 – c1 + a1) –
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
– 1]
=
(c1 – a1)(b1 – c1 + a1)(c1 – b1)。
所以明雙差
=
(b1 – c1 + a1) (c1 – a1)2 +
(c1 – a1)(b1 – c1 + a1)(c1 – b1)
=
(b1 – c1 + a1) (c1 – a1)[(c1 – a1) + (c1 – b1)]
=
(b1 – c1 + a1) (c1 – a1) (2c1 – a1 – b1)。
弦上勾弦較 = c15 – a15
=
(c1 – b1)(a1 – c1 + b1) –
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)(a1 – c1 + b1)[
– 1]
=
(c1 – b1)(b1 + a1 – c1)[c1 – a1]
=
(c1 – b1)(c1 – a1)(b1 + a1 – c1) 。
弦上股弦較 = c15 – b15 。
c15 – b15=
(c1 – b1)(a1 – c1 + b1) –
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)(a1 – c1 + b1)[
– 1]
=
(c1 – b1)(a1 – c1 + b1)(c1 – b1)
=
(c1 – b1)2(a1 – c1 + b1) 。
弦上雙差
=
(c1 – b1)(c1 – a1)(b1 + a1 – c1) +
(c1 – b1)2(a1 – c1 + b1)
=
(c1 – b1)(b1 + a1 – c1)[(c1 – a1) + (c1 – b1)]
=
(c1 – b1)(b1 + a1 – c1)(2c1 – a1 – b1)。
明雙差
雙差共
=
(b1 – c1 + a1) (c1 – a1) (2c1 – a1 – b1) +
(c1 – b1)(b1 + a1 – c1)(2c1 – a1 – b1)
=
(b1 + a1 – c1)(2c1 – a1 – b1)[(c1 – a1) + (c1 – b1)]
=
(a1 + b1 – c1)(2c1 – a1 – b1)[c1 – a1 – b1 + c1]
=
(a1 + b1 – c1)(2c1 – a1 – b1)2。
所以極雙差內減虛雙差 = 明雙差 +
雙差。
內加旁差即極弦內少個虛弦旁差差。
已知極雙差 =
(a1 + b1 – c1)(2c1 – a1 – b1) 及
旁差 =
(b1 – a1)2(b1 + a1 – c1) 。
本條指極雙差內加旁差
=
(a1 + b1 – c1)(2c1 – a1 – b1) +
(a1 + b1 – c1)
=
(a1 + b1 – c1)[c1(2c1 – a1 – b1) +(b1 – a1)2]
=
(a1 + b1 – c1)[2c12 – c1a1 – c1b1 + a12 + b12 – 2b1a1]
=
(a1 + b1 – c1)[3c12 – c1a1 – c1b1 – 2b1a1] 。
又已知太虛弦:c13 =
(c1 – b1)(c1 – a1)。
所以虛弦、旁差之差,即:
(c1 – b1)(c1 – a1) –
(b1 – a1)2(b1 + a1 – c1)
=
(b1 + a1 – c1)2 –
(b1 – a1)2(b1 + a1 – c1)
=
(b1 + a1 – c1)[c1(b1 + a1 – c1) – (b1 – a1)2]
=
(b1 + a1 – c1)[c1b1 + c1a1 – c12 –b12 – a12 + 2b1a1]
=
(b1 + a1 – c1)[c1b1 + c1a1 –2c12 + 2b1a1]。
日川皇極弦﹝簡稱皇極弦﹞:c12 =
(a1 + b1 – c1) 。
極弦內少個虛弦、旁差之差,即:
(a1 + b1 – c1) –
(b1 + a1 – c1)[c1b1 + c1a1 –2c12 + 2b1a1]
=
(b1 + a1 – c1)[c12 – (c1b1 + c1a1 – 2c12+ 2b1a1)]
=
(b1 + a1 – c1)(c12 –c1b1 – c1a1 + 2c12 – 2b1a1)
=
(a1 + b1 – c1)[3c12 – c1a1 – c1b1 – 2b1a1] 。
比較兩式,可知極雙差內加旁差 = 極弦內少個虛弦旁差之差。
內減旁差即虛和也。
本條指極雙差內減旁差,即:
(a1 + b1 – c1)(2c1 – a1 – b1) –
(a1 + b1 – c1)
=
(a1 + b1 – c1)[c1(2c1 – a1 – b1) – (b1 – a1)2]
=
(a1 + b1 – c1)[2c12 – c1a1 – c1b1 – a12 –b12 + 2b1a1]
=
(a1 + b1 – c1)[c12 – c1a1 – c1b1 +2b1a1]
=
(a1 + b1 – c1)[a12 + b12 – c1a1 – c1b1 +2b1a1]
=
(a1 + b1 – c1)[(a1 + b1)2 – c1(a1 + b1)]
=
(a1 + b1 – c1)(a1 + b1)(a1 + b1 – c1)
=
(a1 + b1 – c1)2(a1 + b1)
=
(c1 – b1)(c1 – a1) (b1 + a1)。
注意等式 (c1 – b1)(c1 – a1) =
(a1 + b1 – c1)2。
虛和即太虛勾股和。
太虛勾股和=b13 + a13 =
(c1 – b1)(c1 – a1) +
(c1 – b1)(c1 – a1)]
= (c1 – b1)(c1 – a1)[
+
]
=
(c1 – b1)(c1 – a1)(b1 + a1)。
所以極雙差內減旁差 = 虛和。
內加虛差即極弦內少二
股。
“虛差”指太虛勾股較﹝在勾股形月山泛 13﹞。
太虛勾股較 = b13 – a13 =
(c1 – b1)(c1 – a1) –
(c1 – b1)(c1 – a1)]
= (c1 – b1)(c1 – a1)[
–
]
=
(c1 – b1)(c1 – a1)(b1 – a1)。
極雙差內加虛差,即:
(a1 + b1 – c1)(2c1 – a1 – b1) +
(c1 – b1)(c1 – a1)(b1 – a1)
=
(a1 + b1 – c1)(2c1 – a1 – b1) +
(a1 + b1 – c1)2(b1 – a1)
=
(a1 + b1 – c1)[c1(2c1 – a1 – b1) + (a1 + b1 – c1)(b1 – a1)]
=
(a1 + b1 – c1)(2c12 – c1a1 – c1b1 + b12 – a12 – c1b1 + c1a1)
=
(a1 + b1 – c1)(2c12 – 2c1b1 + b12 – a12)
=
(a1 + b1 – c1)(2a12+ 2b12 – 2c1b1 + b12 – a12)
=
(a1 + b1 – c1)(a12+ 2b12 – 2c1b1 + b12)
=
(a1 + b1 – c1)(c12+ 2b12 – 2c1b1) 。
已知極弦:c12 =
(a1 + b1 – c1)。
山東股﹝又稱
股﹞:b15 =
(c1 – b1)(a1 – c1 + b1)。
極弦內少二
股,即:
(a1 + b1 – c1) – 2 ×
(c1 – b1)(a1 – c1 + b1)
=
(a1 – c1 + b1)[
– (c1 – b1)]
=
(a1 + b1 – c1)(c12 – 2c1b1 +2b12) 。
所以極雙差內加虛差 = 極弦內少二
股。
內減虛差則極弦內少二明勾也。
本條即極雙差內減虛差,即:
(a1 + b1 – c1)(2c1 – a1 – b1) –
(c1 – b1)(c1 – a1)(b1 – a1)
=
(a1 + b1 – c1)(2c1 – a1 – b1) –
(a1 + b1 – c1)2(b1 – a1)
=
(a1 + b1 – c1)[c1(2c1 – a1 – b1) – (a1 + b1 – c1)(b1 – a1)]
=
(a1 + b1 – c1)(2c12 – c1a1 – c1b1 – b12 + a12 + c1b1 – c1a1)
=
(a1 + b1 – c1)(2c12 – 2c1a1 – b12 + a12)
=
(a1 + b1 – c1)(2a12+ 2b12 – 2c1a1 – b12 + a12)
=
(a1 + b1 – c1)(3a12+ b12 – 2c1a1)
=
(a1 + b1 – c1)(c12+ 2a12 – 2c1a1)。
已知極弦:c12 =
(a1 + b1 – c1)。
南月勾﹝又稱明勾﹞:a14 =
(c1 – a1)(b1 – c1 + a1)。
極弦內少二明勾,即:
(a1 + b1 – c1) – 2 ×
(c1 – a1)(b1 – c1 + a1)
=
(a1 + b1 – c1)[
– (c1 – a1)]
=
(a1 + b1 – c1)(c12+ 2a12 – 2c1a1)。
比較答案兩式,可知相等,所以極雙差內減虛差 = 極弦內少二明勾。
以下為《測圓海鏡細草》原文: