《測圓海鏡》之髙差、旁差、極雙差等式﹝諸差2﹞

測圓海鏡髙差旁差極雙差等式﹝諸差2

上傳書齋名:瀟湘館112  Xiāo XiāngGuǎn 112

何世強 Ho Sai Keung

提要:《測圓海鏡》之“圓城圖式”含十四勾股形,連同原有之大勾股形共十五勾股形。本文著重諸勾股形有關三邊之差之等式,例如髙差、旁差、極雙差、平差、虛差、虛雙差、明雙差等。

關鍵詞:髙差、旁差、極雙差、平差、虛差

《測圓海鏡》乃金‧李冶所撰,書成於 1248 年,時為南宋淳祐八年。該書卷一“圓城圖式”主要討論與十五勾股形相關之等式,本文介紹其部分等式並作出証明。

本文所引用之勾股式源自“圓城圖式”之十五勾股形,a1b1c1 乃最大勾股形天地乾之勾、股及弦長。故 a1b1c1 又稱為大勾﹝地乾﹞、大股﹝天乾﹞及大弦﹝天地﹞。

《測圓海鏡》涉及一系列之勾股恆等式,所有恆等式皆與十五勾股形有關。十五勾股形中最大者為天地乾,其三邊勾股弦分別以 a1b1c1 表之,其餘十四勾股形三邊勾股弦則分別以 aibici 表之,其中 1 < i ≦ 15。但 aibici 均可以 a1b1c1 表之,此乃《測圓海鏡》之精髓。注意勾股定理成立,即 ai2 + bi2 = ci2

有關以 a1b1c1aibici 之式可參閱筆者另文〈《測圓海鏡》“圓城圖式”之十二勾股弦算法〉。

本文著重十五勾股形有關三邊之差之等式。

以下左為“圓城圖式”右為“圓城圖式十五句股形圖”。

注意圓徑為 a1 + b1c1,見上圖之東南西北圓。圓徑乃十五勾股形三邊重要因子之一,其他因子為最大勾股形之勾股較、勾弦較及股弘較。

本文主要談及十五勾股形有關三邊相差之等式,其中部分等式曾在“五和五較”等式中出現,可參閱筆者相關之文章。

注意等式 (c1b1)(c1a1) =

(a1 + b1c1)2

以下為有關諸差之式:

髙差內減平差為旁差。邊差內減底差亦同上。明差內減

差亦同上。大差差內減小差差為二旁差。黃廣差內減黃長差亦同上。

極雙差即明

二弦共。內加虛雙差即明

二和共。內減虛雙差即明雙差

雙差共也。內加旁差即極弦內少個虛弦旁差差。內減旁差即虛和也。內加虛差即極弦內少二

股。內減虛差則極弦內少二明勾也。

以下為各條目之証明:

髙差內減平差為旁差。

“髙差”指髙弦﹝在勾股形天日旦 6 或日山朱7﹞上勾股較。

髙弦上勾股較= b6a6 =

(a1 + b1c1) –

(a1 + b1c1)

=

(a1 + b1c1)(

– 1)

=

(a1 + b1c1)(b1a1) 。

“平差”指平弦﹝在勾股形月川青 8 或川地夕 9﹞上勾股較。

平弦上勾股較 = b8a8 =

(a1 + b1c1) –

(a1 + b1c1)

=

(a1 + b1c1)(1 –

)

=

(a1 + b1c1)(b1a1)。

髙差內減平差﹝以髙差為被減數﹞,即:

(a1 + b1c1)(b1a1) –

(a1 + b1c1)(b1a1)

=

(a1 + b1c1)(b1a1)[

]

=

(a1 + b1c1)(b1a1)(b1a1)

=

(a1 + b1c1)(b1a1)2

------------------------------------------

“旁差”又名“傍差”,據《測圓海鏡》所云,明

二差較名為傍差。“差”指勾股較,“明差”指明弦上之勾股較,其餘類推。

明差 = b14a14 =

(c1a1)(b1c1 + a1) –

(c1a1)(b1c1 + a1)

=

(c1a1)( a1 + b1c1)[

]。

差 = b15a15 =

(c1b1)(a1c1 + b1) –

(c1b1)(a1c1 + b1)

=

(c1b1)( a1 + b1c1) [

]。

二差較 = 明差 –

=

(c1a1)( a1 + b1c1)[

] –

(c1b1)( a1 + b1c1) [

]

=

( a1 +b1c1)[

][(c1a1) – (c1b1)]

=

(a1 + b1c1)(b1a1)

=

(a1 + b1c1) 。

----------------------------------

以上之式是為“旁差”。所以髙差內減平差 = 旁差。

邊差內減底差亦同上。

“邊差”指“邊弦上勾股較”,“邊弦上勾股較”指 b2a2﹝在勾股形天川西 2﹞。

b2a2 =

(c1 + b1a1) –

(c1 + b1a1)

=

(c1 + b1a1) (1 –

)

=

(c1 + b1a1)(b1a1) 。

“底差”指“底弦上勾股較”,而“底弦上勾股較”指 b3a3﹝在勾股形日地北 3﹞。

b3a3 =

(a1b1 + c1) –

(a1b1 + c1)

=

(a1b1 + c1)(

– 1)

=

(a1b1 + c1)(b1a1) 。

邊差內減底差,即:

(c1 + b1a1)(b1a1) –

(a1b1 + c1)(b1a1)

=

(b1a1)[

(c1 + b1a1) –

(a1b1 + c1)]

=

(b1a1)[a1(c1 + b1a1) – b1(a1b1 + c1)]

=

(b1a1)[a1c1 + a1b1a12b1a1 + b12b1c1]

=

(b1a1)[a1c1a12+ b12b1c1]

=

(b1a1)[a1c1a12+ b12b1c1]

=

(b1a1)[(b1a1)(b1 + a1) – c1(b1a1)]

=

(b1a1)(b1a1)[(b1 + a1) – c1]

=

(b1a1)2(b1 + a1c1) 。

比較答案兩式,可知相等,所以邊差內減底差 = 旁差。

明差內減

差亦同上。

二差較名傍差,見前文。明

二差較即明差內減

差,明差內減

差乃《測圓海鏡》旁差之定義。

大差差內減小差差為二旁差。

“大差差”指大差﹝在勾股形天月坤 10﹞上之勾股較,勾股較即勾股差。

大差上勾股差 = b10a10 = (c1a1) –

(c1a1)

= (c1a1)(1 –

)

=

(c1a1)(b1a1) 。

“小差差”指小差﹝在勾股形山地艮 11﹞上之勾股較。

小差上勾股較 = b11a11 = – (c1b1) +

(c1b1)

= (c1b1)(

– 1)

=

(c1b1)(b1a1) 。

大差差內減小差差,即:

(c1a1)(b1a1) –

(c1b1)(b1a1)

= (b1a1)[

(c1a1) –

(c1b1)]

=

(b1a1)[ a1(c1a1) – b1(c1b1)]

=

(b1a1)(a1c1a12b1c1 + b12)

=

(b1a1)[(b1a1)(b1 + a1) – c1(b1a1)]

=

(b1a1)(b1a1)[(b1 + a1) – c1]

=

(b1a1)2(b1 + a1c1)。

二旁差= 2 ×

(b1a1)2(b1 + a1c1) =

(b1a1)2(b1 + a1c1)。

比較兩式可知相同,所以大差差內減小差差 = 二旁差。

黃廣差內減黃長差亦同上。

黃廣差﹝在勾股形天山金 4﹞指黃廣弦之勾股較。

金山勾 ﹝又稱黃廣勾﹞:a4 =

(a1 + b1c1) × 2 = a1 + b1c1

天金股﹝又稱黃廣股﹞:b4 =

=

(a1 + b1c1) 。

黃廣勾股較 = b4a4 =

(a1 + b1c1) – (a1 + b1c1)

= (a1 + b1c1)(

– 1)

=

(a1 + b1c1)(b1a1) 。

黃長差﹝在勾股形月地泉 5﹞指黃長弦之勾股較。

月泉股﹝又稱黃長股﹞:b5 =

(a1 + b1c1) × 2 = a1 + b1c1

泉地勾﹝又稱黃長勾﹞:a5 =

=

(a1 + b1c1) 。

黃長勾股較 = b5a5 = (a1 + b1c1) –

(a1 + b1c1)

= (a1 + b1c1)(1 –

)

=

(a1 + b1c1)(b1a1) 。

黃廣差內減黃長差,即:

(a1 + b1c1)(b1a1) –

(a1 + b1c1)(b1a1)

= (a1 + b1c1)(b1a1)[

]

=

(a1 + b1c1)(b1a1)(b1a1)

=

(a1 + b1c1)(b1a1)2

所以黃廣差內減黃長差 = 二旁差﹝見前式﹞。

極雙差即明

二弦共。

所謂“極雙差”乃指日心股之勾弦差及股弦差之和,是為“雙差”。

已知極弦:c12 =

(a1 + b1c1)。極股:b12 =

(a1 + b1c1)。

極勾:a12 =

(a1 + b1c1)。

以下為勾弦差及股弦差:

c12a12 =

(a1 + b1c1) –

(a1 + b1c1) =

(a1 + b1c1)[

– 1],

c12b12 =

(a1 + b1c1) –

(a1 + b1c1) =

(a1 + b1c1)[

– 1],

極雙差 = 即以上兩式之和,即:

(a1 + b1c1)[

– 1] +

(a1 + b1c1)[

– 1]

=

(a1 + b1c1)(c1a1) +

(a1 + b1c1)(c1b1)

=

(a1 + b1c1)(c1a1 + c1b1)

=

(a1 + b1c1)(2c1a1b1)。

日月為明弦﹝簡稱明弦﹞:c14 =

(c1a1)(b1c1 + a1)。

山川

弦﹝簡稱

弦﹞:c15 =

(c1b1)(a1c1 + b1)。

二弦共 = c14 + c15

c14 + c15 =

(c1a1)(b1c1 + a1) +

(c1b1)(a1c1 + b1)

=

(b1c1 + a1)[ (c1a1) + (c1b1)]

=

(a1 + b1c1)(2c1a1b1)。

比較答案兩式,可知相等,所以極雙差 = 明

二弦共。

內加虛雙差即明

二和共。

“虛雙差”即太虛勾弦較與太虛股弦較之和﹝在勾股形月山泛 13﹞。

已知太虛勾弦較 = c13a13 =

(c1b1)(c1a1) –

(c1b1)(c1a1)

=

(c1b1)(c1a1)[

– 1]

=

(c1b1)(c1a1)(c1a1)

=

(c1b1)(c1a1)2

太虛股弦較= c13b13 =

(c1b1)(c1a1) –

(c1b1)(c1a1)

=

(c1b1)(c1a1)[

– 1]

=

(c1a1)(c1b1)(c1b1)

=

(c1a1)(c1b1)2

所以虛雙差 =

(c1b1)(c1a1)2 +

(c1a1)(c1b1)2

=

(c1a1)(c1b1)[(c1a1) + (c1b1)]

=

(c1a1)(c1b1)(2c1a1b1)

=

(a1 + b1c1)2(2c1a1b1)。

所以極雙差 +虛雙差,即:

(a1 + b1c1)(2c1a1b1) +

(a1 + b1c1)2(2c1a1b1)

=

(a1 + b1c1)(2c1a1b1)[c1 + a1 + b1c1]

=

(a1 + b1c1)(2c1a1b1)(a1 + b1) 。

又已知“明和”即明弦勾股和 = b14 +a14﹝在勾股形日月南 14﹞,即:

b14 + a14=

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

+

]

=

(c1a1)(b1c1 + a1)(a1 + b1) 。

和”即

弦上勾股和 = b15 +a15 ﹝在勾股形山川東 15﹞,即:

b15 + a15 =

(c1b1)(a1c1 + b1) +

(c1b1)(a1c1 + b1)

=

(c1b1)(a1c1 + b1)(

+

)

=

(c1b1)(a1c1 + b1)(b1 + a1) 。

二和共,即:

(c1a1)(b1c1 + a1)(a1 + b1) +

(c1b1)(a1c1 + b1)(b1 + a1)

=

(b1c1 + a1)(a1 + b1)[ (c1a1) + (c1b1)]

=

(a1 + b1c1)(2c1a1b1)(a1 + b1) 。

比較兩式可知相同,所以極雙差內加虛雙差 = 明

二和共。

內減虛雙差即明雙差

雙差共也。

本條指極雙差內減虛雙差。

極雙差– 虛雙差,即:

(a1 + b1c1)(2c1a1b1) –

(a1 + b1c1)2(2c1a1b1)

=

(a1 + b1c1)(2c1a1b1)[c1a1b1 + c1]

=

(a1 + b1c1)(2c1a1b1)2

明弦﹝在勾股形日月南 14﹞勾弦較=c14a14

c14a14 =

(c1a1)(b1c1 + a1) –

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

– 1]

=

(b1c1 + a1)(c1a1)(c1a1)

=

(b1c1 + a1) (c1a1)2

明弦股弦較 = c14b14

=

(c1a1)(b1c1 + a1) –

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

– 1]

=

(c1a1)(b1c1 + a1)(c1b1)。

所以明雙差

=

(b1c1 + a1) (c1a1)2 +

(c1a1)(b1c1 + a1)(c1b1)

=

(b1c1 + a1) (c1a1)[(c1a1) + (c1b1)]

=

(b1c1 + a1) (c1a1) (2c1a1b1)。

弦上勾弦較 = c15a15

=

(c1b1)(a1c1 + b1) –

(c1b1)(a1c1 + b1)

=

(c1b1)(a1c1 + b1)[

– 1]

=

(c1b1)(b1 + a1c1)[c1a1]

=

(c1b1)(c1a1)(b1 + a1c1) 。

弦上股弦較 = c15b15

c15b15=

(c1b1)(a1c1 + b1) –

(c1b1)(a1c1 + b1)

=

(c1b1)(a1c1 + b1)[

– 1]

=

(c1b1)(a1c1 + b1)(c1b1)

=

(c1b1)2(a1c1 + b1) 。

弦上雙差

=

(c1b1)(c1a1)(b1 + a1c1) +

(c1b1)2(a1c1 + b1)

=

(c1b1)(b1 + a1c1)[(c1a1) + (c1b1)]

=

(c1b1)(b1 + a1c1)(2c1a1b1)。

明雙差

雙差共

=

(b1c1 + a1) (c1a1) (2c1a1b1) +

(c1b1)(b1 + a1c1)(2c1a1b1)

=

(b1 + a1c1)(2c1a1b1)[(c1a1) + (c1b1)]

=

(a1 + b1c1)(2c1a1b1)[c1a1b1 + c1]

=

(a1 + b1c1)(2c1a1b1)2

所以極雙差內減虛雙差 = 明雙差 +

雙差。

內加旁差即極弦內少個虛弦旁差差。

已知極雙差 =

(a1 + b1c1)(2c1a1b1) 及

旁差 =

(b1a1)2(b1 + a1c1) 。

本條指極雙差內加旁差

=

(a1 + b1c1)(2c1a1b1) +

(a1 + b1c1)

=

(a1 + b1c1)[c1(2c1a1b1) +(b1a1)2]

=

(a1 + b1c1)[2c12c1a1c1b1 + a12 + b12 – 2b1a1]

=

(a1 + b1c1)[3c12c1a1c1b1 – 2b1a1] 。

又已知太虛弦:c13 =

(c1b1)(c1a1)。

所以虛弦、旁差之差,即:

(c1b1)(c1a1) –

(b1a1)2(b1 + a1c1)

=

(b1 + a1c1)2

(b1a1)2(b1 + a1c1)

=

(b1 + a1c1)[c1(b1 + a1c1) – (b1a1)2]

=

(b1 + a1c1)[c1b1 + c1a1c12b12a12 + 2b1a1]

=

(b1 + a1c1)[c1b1 + c1a1 –2c12 + 2b1a1]。

日川皇極弦﹝簡稱皇極弦﹞:c12 =

(a1 + b1c1) 。

極弦內少個虛弦、旁差之差,即:

(a1 + b1c1) –

(b1 + a1c1)[c1b1 + c1a1 –2c12 + 2b1a1]

=

(b1 + a1c1)[c12 – (c1b1 + c1a1 – 2c12+ 2b1a1)]

=

(b1 + a1c1)(c12c1b1c1a1 + 2c12 – 2b1a1)

=

(a1 + b1c1)[3c12c1a1c1b1 – 2b1a1] 。

比較兩式,可知極雙差內加旁差 = 極弦內少個虛弦旁差之差。

內減旁差即虛和也。

本條指極雙差內減旁差,即:

(a1 + b1c1)(2c1a1b1) –

(a1 + b1c1)

=

(a1 + b1c1)[c1(2c1a1b1) – (b1a1)2]

=

(a1 + b1c1)[2c12c1a1c1b1a12b12 + 2b1a1]

=

(a1 + b1c1)[c12c1a1c1b1 +2b1a1]

=

(a1 + b1c1)[a12 + b12c1a1c1b1 +2b1a1]

=

(a1 + b1c1)[(a1 + b1)2c1(a1 + b1)]

=

(a1 + b1c1)(a1 + b1)(a1 + b1c1)

=

(a1 + b1c1)2(a1 + b1)

=

(c1b1)(c1a1) (b1 + a1)。

注意等式 (c1b1)(c1a1) =

(a1 + b1c1)2

虛和即太虛勾股和。

太虛勾股和=b13 + a13 =

(c1b1)(c1a1) +

(c1b1)(c1a1)]

= (c1b1)(c1a1)[

+

]

=

(c1b1)(c1a1)(b1 + a1)。

所以極雙差內減旁差 = 虛和。

內加虛差即極弦內少二

股。

“虛差”指太虛勾股較﹝在勾股形月山泛 13﹞。

太虛勾股較 = b13a13 =

(c1b1)(c1a1) –

(c1b1)(c1a1)]

= (c1b1)(c1a1)[

]

=

(c1b1)(c1a1)(b1a1)。

極雙差內加虛差,即:

(a1 + b1c1)(2c1a1b1) +

(c1b1)(c1a1)(b1a1)

=

(a1 + b1c1)(2c1a1b1) +

(a1 + b1c1)2(b1a1)

=

(a1 + b1c1)[c1(2c1a1b1) + (a1 + b1c1)(b1a1)]

=

(a1 + b1c1)(2c12c1a1c1b1 + b12a12c1b1 + c1a1)

=

(a1 + b1c1)(2c12 – 2c1b1 + b12a12)

=

(a1 + b1c1)(2a12+ 2b12 – 2c1b1 + b12a12)

=

(a1 + b1c1)(a12+ 2b12 – 2c1b1 + b12)

=

(a1 + b1c1)(c12+ 2b12 – 2c1b1) 。

已知極弦:c12 =

(a1 + b1c1)。

山東股﹝又稱

股﹞:b15 =

(c1b1)(a1c1 + b1)。

極弦內少二

股,即:

(a1 + b1c1) – 2 ×

(c1b1)(a1c1 + b1)

=

(a1c1 + b1)[

– (c1b1)]

=

(a1 + b1c1)(c12 – 2c1b1 +2b12) 。

所以極雙差內加虛差 = 極弦內少二

股。

內減虛差則極弦內少二明勾也。

本條即極雙差內減虛差,即:

(a1 + b1c1)(2c1a1b1) –

(c1b1)(c1a1)(b1a1)

=

(a1 + b1c1)(2c1a1b1) –

(a1 + b1c1)2(b1a1)

=

(a1 + b1c1)[c1(2c1a1b1) – (a1 + b1c1)(b1a1)]

=

(a1 + b1c1)(2c12c1a1c1b1b12 + a12 + c1b1c1a1)

=

(a1 + b1c1)(2c12 – 2c1a1b12 + a12)

=

(a1 + b1c1)(2a12+ 2b12 – 2c1a1b12 + a12)

=

(a1 + b1c1)(3a12+ b12 – 2c1a1)

=

(a1 + b1c1)(c12+ 2a12 – 2c1a1)。

已知極弦:c12 =

(a1 + b1c1)。

南月勾﹝又稱明勾﹞:a14 =

(c1a1)(b1c1 + a1)。

極弦內少二明勾,即:

(a1 + b1c1) – 2 ×

(c1a1)(b1c1 + a1)

=

(a1 + b1c1)[

– (c1a1)]

=

(a1 + b1c1)(c12+ 2a12 – 2c1a1)。

比較答案兩式,可知相等,所以極雙差內減虛差 = 極弦內少二明勾。

以下為《測圓海鏡細草》原文:

(0)

相关推荐