继电器[继电器]
继电器定义
继电器一般都有反映一定输入变量(如电流、电压、功率、阻抗、温度、压力、速度、光等)
的感应机构(输入部分);有能对被控电路实现“通”、“断”控制的执行机构(输出部分);在继电器的输入部分和输出部分,还有对输入量进行耦合隔离,功能处理和对输出部分进行驱动的中间机构(驱动部分)。继电器为当输入量(或激励量)满足某些规定条件时,能在一个或多个电气输出电路中产生预定跃变的一种器件。就其在被控制电路中作用来讲,就相当于一个“开关”,但它不是由人操纵,而是一种自动远动控制元件。
继电器原理
作用与用途
继电器的作用
1)输入与输出电路之间的隔离
继电器的作用
2)信号转换(从断到接通或反之)
3)增加输出电路(即切换几个负载或切换不同电源负载)
4)重复信号
5)切换不同电压或电流负载
6)保留输出信号
7)闭锁电路
8)提供遥控
继电器的用途
1)通讯继电器 (包括高频继电器) 该类继电器触点负载范围从低电平到中等电流,环境使用条件要求不高。如:现代程控交换机,一般局用交换机里至少每线用三只继电器
2)机床继电器 机床中使用的继电器,触点负载功率大,寿命长。
3)家电用继电器 家用电器中使用的继电器,要求安全性能好。
4)汽车继电器 汽车中使用的继电器,该类继电器切换负载功率大,抗冲、抗振性高。大部分轿车只要掀起发动机盖找到继电器安装盒,都可以寻到继电器的踪影。汽车灯光、雨刮器、起动机、空调机、电动座椅、电动门窗、防抱死装置、悬挂控制、音响等都要用上控制继电器,它是汽车使用最多的电子元器件之一,汽车控制继电器技术要求苛刻,因为它要适应震动、高温、低温、潮湿以及油、盐、水等侵蚀性恶劣环境,要求寿命长、高可靠、体积小、低消耗,同时具有电磁兼容性、阻燃性、响应速度快等性能。
继电器作用
继电特性
从电路角度来看,继电器分为二个部份:一个是控制部份,即输入回路;一个是被控制部份,即输出回路。当Relay的控制部份输入一个达到某一定值的物理量(如电、磁、光、热、声等)时,它的被控制部份中的电参量就能发生跳跃式变化,如图1-1所示,X表示输入回路的物理量,Y表示输出回路的物理量。
继电器继电特性
继电器的组成
从广义上讲,凡是具有自动完成继电特性能力的元器件,皆称为继电器。电磁继电器、输入、输出回路的参数均为电参量。X为Relay线圈电流值或电压值。Y为Relay触点回路的电流值。Relay由三个部份组成。
1.1、 反应机构:接受输入信号,并将信号变换成为使Relay动作的物理量。例如,电磁继电器的电磁系统。
1.2、 中间机构:提供控制的标准比较量。例如:电磁继电器的反作用弹簧或簧片。
1.3、 执行机构:改变输出回路的电参数。例如:电磁继电器的接触系统(或黎触部分)。所以,继电器又是一种反应与传递信号的电器元件。
继电器的组成图
继电器分类
防护特征分类
电磁继电器 由控制电流通过线圈所产生的电磁吸力驱动磁路中的可动部分而实现触点开、闭或转换功能的继电器。
1、电磁继电器 直流电磁继电器 控制电流为直流的电磁继电器,按触点负载大小分为微功率、弱功率、中功率和大功率四种。
电磁式继电器
2、 交流电磁继电器 控制电流为交流的电磁继电器。按线圈电源频率高低分50HZ和400HZ二种。
3、 磁保持继电器 利用永久磁铁或具有很高剩磁特性的零件,使电磁继电器的衔铁在其线圈断电后仍能保持在线圈通电时的位置上的继电器。
4、固态继电器 固态继电器是一种能够象电磁电器那样执行开、闭线路的功能,且其输入和输出的绝缘程度与电磁继电器相当的全固态器件。
5、混合式继电器 由电子元件和电磁电器组合而成的继电器。一般,输入部分由电子线路组成,起放大整流等作用,输出部分则采用电磁继电器。
6、高频继电器 用于切换频率大于10KHz的交流线路的继电器。
7、同轴继电器 配用同轴电缆,用来切换高频、射频线路而具有最小损耗的继电器。
8、真空继电器 触点部分被密封在高真空的容器中,用来快速开、闭或转换高压、高频、射频线路用的继电器。
热继电器 利用热效应而动作的继电器。
9、热继电器 温度继电器 当外界温度达到规定要求时而动作的继电器。
10、 电热式继电器 利用控制电路内的电能转变成热能,当达到规定要求时而动作的继电器。
11、光电继电器 利用光电效应而动作的继电器。
12、极化继电器 由极化磁场与控制电流通过控制线圈,所产生的磁场综合作用而动作的继电器。继电器的动作方向取决于控制线圈中的电流方向。
13、时间继电器 当加上或除去输入信号时,输出部分需延时或限时到规定的时间才闭合或断开其被控线路的继电器。
14、舌簧继电器 利用密封在管内,具有触点簧片和衔铁磁路双重作用的舌簧的动作来开、闭或转换线路的继电器。
触点负载分类
1、微功率继电器 当触点开路电压为直流27伏时,触点额定负载电流(阻性)为0.1安培、0.2安培的继电器。
2、弱功率继电器 当触点开路电压为直流27伏时,触点额定负载电流(阻性)为0.5安培、1安培的继电器
3、中功率继电器 当触点开路电压为直流27伏时,触点额定负载电流(阻性)为2安培、5安培的继电器
4、大功率继电器 当触点开路电压为直流27伏时,触点额定负载电流(阻性)为10安培、15安培、20安培、25安培、40安培……的继电器。
继电器
外形尺寸分类
1、微型继电器 最长边尺寸不大于10毫米的继电器
2、超小型继电器 最长边尺寸大于10毫米,但不大于25毫米的继电器。
3、小型继电器 最长边尺寸大于25毫米,但不大于50毫米的继电器。
注:对于密封或封闭式继电器,外形尺寸为继电器本体三个相互垂直方向的最大尺寸,不包括安装件、引出端、压筋、压边、翻边和密封焊点的尺寸。
防护特征分类
1、密封继电器 采用焊接或其它方法,将触点和线圈等都密封在罩壳内,与周围介质相隔离,泄漏率较低的继电器。
2、封闭式继电器 将触点和线圈等都封闭(非密封)在罩壳内加以防护的继电器
3、敞开式继电器 不用防护罩来保护触点和线圈等的继电器。
命名和标注
a) 继电器的型号命名,一般由各制造厂根据各自特点各自命名,一般由产品主型号,短划线及部分特征符号组成。
b) “元则”继电器之订货标记由以下符号组成。
不同工厂命名标记
继电器标示
触点组合形式
要求与参数
注:以下如不特别注明,则均以电磁为电器为对象进行阐述。
a) 机械物理参数要求:
保证产品的使用安装尺寸、重量、密封性、引线脚的强度和可焊性等。包括有:触点压力、触
点间隙、触点跟踪、复原簧片压力、衔铁动程、止钉高度等几项机械参数。
电磁继电器原理图
b) 电气参数要求:
保证继电器在规定使用条件下,可靠正常地工作,准确地反应和传速信号。包括有:绕组电阻、
触点接触电阻、吸合电流(电压)、额定工作电流(电压)、释放电流(电压)、额定触点负荷、绝缘电阻、抗电强度等项电气参数。
c) 时间参数要求:
在控制线路中往往提出继电器吸合和释放时间的要求,还有衔铁转换、触点抖动、脉冲失真等
时间参数要求。
d) 环境适应性要求:
根据继电器的使用环境,为了保证可靠性地工作,环境适应性项目有:温度(极限高低温、温
度循环、温度冲击、低温贮存等)、耐潮湿(常温高湿、高温高湿)、耐低气压、振动稳定性及振动强度、冲击稳定性及冲击强度、恒加速度。
在特殊环境下,还有抗盐雾、抗霉菌、耐辐射、运输、贮存等项目。
e) 寿命及失效率指标要求:
继电器在规定的试验环境条件和触点负载下,在规定的动作次数内,失误次数应不超过产品规
定的要求,这里所指的失误,是指继电器在动作过程中,触点断开时的粘结现象,以致触点闭合时触点压降超过规定的水平。
f) 安全规格要求:
为防止触点和火灾,产品必须要符合有关国家的安全规定,如中国CQC、美国UL、加拿大CSA、
德国VDE、TUV等。
以上几项要求,并非所有继电器都要达到,根据不同使用条件,继电器的技术要求也不同。
电磁继电器
参数的测试
1、吸合值、释放值
继电器的不吸动值、吸合值、保持值、释放值测试按图一所示的测试程序图进行。该测试程序为生产单位和使用单位共同遵守的统一方法,其最大优点是测试的参数重复性好,它并不表示实际使用中继电器要先磁化,后工作。
继电器主要参数值
按一般要求,交流继电器的吸合电压不大于其额定电压的85%,直流继电器的吸合电压不大于其额定电压的75%(有的为80%)。保持电压,直流继电器通常为30%--40%额定电压,交流继电器保持电压要大些。直流继电器的释放电压通常不小于10%额定电压(有的为5%)。交流继电器的释放电压通常为30%左右额定电压。
2、线圈电阻
线圈电阻的测量可用电压、电流法和电桥法。用电压、电流法测量时,应尽量避免或减小电压表、电流表内阻的影响,测试过程要尽量短,以避免线圈温升。线圈电阻对测量时的环境温度比较敏感,所以测试前1-2小时内产品要置于要测试的环境下并(最好)不对线圈施加激励。测试数值Ra应换算成基准温度(一般为20℃)下的值,换算公式为:Ra = R0[ 1+ a(Ta-20)]式中:Ta为环境温度(℃)
a为电阻温度系数(铜导线的温度系数是0.004 / ℃)
3、接触电阻
测量动断触点接触电阻时继电器处于不激励状态,测量动合触点接触电阻时继电器处于额定激励状态。接触电阻的测量采用电压电流表法。测量时,加到触点上的负载(阻性)应符合表7规定。测试部位在引出端离其根部4mm之内,负载应在触点达稳定闭合之后施加,触点断开之前切除。
继电器国际规定测量接触电阻(或压降)的负载大小
应用类别
应用类别
测试负载(阻性)
CA0
≤30mV, ≤10Ma
10mA×30mV
CA1
30Mv-60V,0.01-0.1A
10mA×100mV
CA2
5-250V,0.1-1.0A
100mA×24V
CA3
5-600V,0.1-100A
1A×24V
4、绝缘性能
继电器绝缘电阻的测试一般都使用兆欧表,被测继电器应置于优质绝缘板上,测试电压应符合各产品技术要求规定,一般加电压2s之后的最小值即为被测值。
介质耐压测试时在最高电压(110%额定电压)下保持1~5s,有争议时应以额定电压保持1min为准。
5、时间参数
时间参数的测量电路如图二所示,也可以用其他合适的电子仪器、仪表代替,但触点负载应为阻性,测动作、释放及回跳时间用10mA×6V(阻性负载),测稳定时间负载为50Aμ×50mA(阻性负载)。仪器的分辨率为1μS。
测量动作时间应以额定工作电压的下限激励,测量释放时间应从额定工作电压的上限切除。
6、外形尺寸
外形尺寸检查的依据是外形图,测量引出端位置尺寸时,应在距底板3毫米范围内测量,测量时所施外力不得造成继电器的任何损伤。
若无特殊规定,第1—5条测量均在正常气候条件下进行:温度15—35摄氏度,相对湿度45%~75%,大气压力86.7—106.7Kpa。
继电器
继电器的选择
1、按使用环境选型
使用环境条件主要指温度(最大与最小)、湿度(一般指40摄氏度下的最大相对湿度)、低气压(使用高度1000米以下可不考虑)、振动和冲击。此外,尚有封装方式、安装方式、外形尺寸及绝缘性等要求。由于材料和结构不同,继电器承受的环境力学条件各异,超过产品标准规定的环境力学条件下使用。有可能损坏继电器,可按整机的环境力学条件或高一级的条件选用。
对电磁干拢或射频干拢比较敏感的装置周围,最好不要选用交流电激励的继电器。选用直流继电器要选用带线圈瞬态抑制电路的产品,那些用固态器件或电路提供激励及尖峰信号比较敏感的地方,也要选择有瞬态抑制电路的产品。
2、按输入信号不同确定继电器种类
按输入信号是电、温度、时间、光信号确定选电磁、温度、时间、光电继电器,这是没有问题的。这里特别说明电压、电流继电器的选用。若整机供给继电器线圈是恒定的电流应选用电流继电器,是恒定电压值则选用电压继电器。
3、输入参量的选定
与用户密切相关的输入量是线圈工作电压(或电流),而吸合电压(或电流)则是继电器制造厂控制继电器灵敏度并对其进行判断、考核的参数。对用户来讲,它只是一个工作下极限参数值。控制安全系数是工作电压(电流)、吸合电压(电流),如果在吸合值下使用继电器,是不可靠的、不安全的,环境温度升高或处于振动、冲击条件下,将使继电器工作不可靠。整机设计时,不能以空载电压作为继电器工作电压依据,而应将线圈接入作为负载来计算实际电压,特别是电源内阻大时更是如此。当用三极管作为开关元件控制线圈通断时,三极管必须上于开关状态,对6VDC以下工作电压的继电器来讲,还应扣除三极管饱和压降。当然,并非工作值加得愈高愈好,超过额定工作值太高会增加衔铁的冲击磨损,增加触点回跳次数,缩短电气寿命,一般,工作值为吸合值的1.5倍,工作值的误差一般为±10%。
4、根据负载情况选择继电器触点的种类和容量
国内外长期实践证明,约70%的故障发生在触点上,这足见正确选择和使用继电器触点非常重要。
触点组合形式和触点组数应根据被控回路实际情况确定。常用的触点组合形式见表6。动合触点组和转换触点组中的动合触点对,由于接通时触点回跳次数少和触点烧蚀后被偿量大,其负载能力和接触可靠性较动断触点组和转换触点组中的动断触点对要高,整机线路可通过对触点位置适当调整,尽量多用动合触点。
根据负载容量大小和负载性质(阻性、感性、容性、灯载及马达负载)确定参数十分重要。认为触点切换贡荷小一定比切换负荷大可靠是不正确的,一般说,继电器切换负荷在额定电压下,电流大于100mA,小于额定电流的75%最好。电流小于100mA会使触点积碳增加,可靠性下降,故100mA称作试验电流,是国内外专业标准对继电器生产厂工艺条件和水平的考核内容。由于一般继电器不具备低电平切换能力,用于切换50mV,50μA以下负荷的继电器在订货时,用户需注明,必要时应请继电器生产厂协助选型。
继电器的触点额定负载与寿命是指在额定电压、电流下,负载为阻性的动作次数,出超出额定电压时,可参照触点负载曲线选用,当负载性质改变时,其触点负载能力将发生变化,用户可参照表8变换触点负载电流。
电阻性电流
电感性电流
电机电流
灯电流
最小电流
100%
30%
20%
15%
100mA
极性转换、相位转换负载场合,最后选用三位置的K型触点(详见表6),不要选用二位置的Z型触点,除非产品明确规定用于三相交流负载转换。否则随着产品动作次数的增加,其燃弧也会增大,Z型触点可能导致电源被短路。
在切换不同步的单相交流负载时,会存在相位差,所以触点额定值应为负载电流的4倍,额定电压为负载电压的2倍。适合交流负载的触点不一定适合于几个电源相位之间的负载切换,必要时应时行相应的电寿命试验。
性质
浪涌电流
浪涌时间
备 注
阻性
稳态电流
L≤10-4 H或cos Φ = 10-0.01
螺线管
10-20倍稳态电流
0.07 - 0.1
应当看作感性负载,但当τ=L/R<10-4S时可视为阻性负载
马达
5-10倍稳态电流
0.2- 0.5
可用5~6倍电流的阻性负载来代替试验
白灯
10-15倍稳态电流
0.34
汞灯
约3倍稳态电流
180- 300
展开全部
继电器选择
继电器的使用
通常人们所说的产品可靠性是指产品的工作可靠性,其被定义:在规定的条件下和规定的时间
内完成规定功能的能力。它由产品的固有可靠性和使用可靠性组成,前项由产品的设计和制造工艺决定,而后项则与用户的正确使用及生产厂家售前、售后服务有关,用户使用时应注意以下各项:
1、线圈使用电压
线圈使用电压设计上最好按额定电压选择,若不能,可参考温升曲线选择。使用任何小于额定工作电压的线圈电压将会影响继电器的工作。注意线圈工作电压是指加到线圈引出端之间的电压,特别是用放大电路来激励线圈务必保证线圈两上引出端间的电压值。反之超过最高额定工作电压时也会影响产品性能,过高的工作电压会使线圈温升过高,特别是在高温下,温升过高会使绝缘材料受到损伤,也会影响到继电器的工作安全。对磁保持继电器,激励(或复归)脉宽应不小于吸合(或复归)时间的3倍,否则产品会处于中位状态,用固态器件来激励线圈时,其器件耐压至少在80V以上,且漏电流要足够小,以确保继电器的释放。
激励电源:在110%额定电流下,电源调整率≤10%(或输出阻抗<5%的线圈阻抗),直流电源的波纹电压应<5%。交流波形为正弦波,波形系数应在0.95-1.25之间,波形失真应在±10%以内,频率变化应在±1Hz或规定频率的±1%之内(取较大值)。其输出功率不小于线圈功耗。
2、瞬态抑制
继电器线圈断电瞬间,线圈上可产生高于线圈额定工作电压值30倍以上的反峰电压,对电子线路有极大的危害,通常采用并联瞬态抑制(又叫削峰)二极管或电阻的方法加以抑制,使反峰电压不超过50V,但并联二极管会延长继电器的释放时间3-5倍,当释放时间要求高时,可在二极管一端串接一个合适的电阻。
3、多个继电器的并联和串联供电
多个继电器并联供电时,反峰电压高(即电感大)的继电器会向反峰电压低的继电器放电,其释放时间会延长,因此最好每个继电器分别控制后再并联才能消除相互影响。
不同线圈电阻和功耗的继电器不要串联供电使用,否则串联回路中线圈电流大的继电器不能可靠工作,只有同规格型号的继电器可以串联供电,但反峰电压会提高,应给予抑制,可以按分压比串联电阻来承受供电电压高出继电器的线圈额定电压的那部分电压。
4、触点负载
加到触点上的负载应符合触点的额定负载和性质,不按额定负载大小(或范围)和性质施加负载往往容易出现问题。只适合直流负载的产品不应用于交流场合。能可靠切换10A负载的继电器,在低电平负载(小于10mA×6A)或干电路不下一定能可靠工作。能切换单相交流电源的继电器不一定适合切换两个不同步的单相交流负载;只规定切换交流50Hz(或60Hz)的产品不应用来切换400Hz的交流负载。
5、触点并联和串联
触点并联使用不能提高其负载电流,因为继电器多组触点动作的绝对不同时性,即仍然是一组触点在切换提高后的负载,很容易使触点损坏而不接触或熔焊而不能断开。触点并联对“断”失误可以降低失效率,但对“粘”失误则相反。由于触点失误以“断”失误为主要失效模式,故并联对提高可靠性应予肯定,可使用于设备的关键部位。但使用电压不要高于线圈最大工作电压,也不要低于额定电压的90%,否则会危及线圈寿命和使用可靠性。触点串联能够提高其负载电压提高的倍数即为串联触点的组数。触点串联对“粘”失误可能提高其可靠性,但对“断”失误则相反。总之,利用冗余技术来提高触点工作可靠性时,务必注意负载性质、大小及失效模式。
6、切换速率
继电器切换速率应不高于其10倍动作时间和释放时间之和的倒数(次/S),否则继电器触点不能稳定接通。磁保持应在继电器技术标准规定的脉冲宽度下使用,否则有可能损坏线圈。
继电器的安装
1、引出端保护
将继电器焊拉接在印制电路板上使用时,印制板的孔距要正确,孔径不能太小,当必须扳动引出端时,应首先将引出端靠底板3mm处固定再扳动和扭转。直径≥0.8mm的引出端不允许扳动和扭转。继电器底板与印制板之间应有大于0.3mm的间隙,这可保护引出端根部不受外力损伤,也便于焊后清洗时清洗涂的流出和挥发。焊孔式和焊钩式引出端在焊接引线和焊下引线过程中都不能使劲绞导线、拉导线,以免造成引出端松动。
注:安装时继电器不慎掉落在地,由于受强冲击,内部可能受损,应隔离、检验确认合格后才能使用。
2、焊接与清洗
继电器引出端的焊接应使用中性松香焊剂,不应使用酸性焊剂,焊接后应及时清洗、烘干。焊接用电路铁以30-60W为宜,烙铁顶端温度280~330℃为好,焊接时间应不大于3秒,自动焊锡时,焊料温度260℃,焊接时间不大于5秒。非密封继电器在焊接和清洗过程中,切勿让焊剂、清洗液污染继电器内部结构,而密封继电器和可清洗式塑封继电器都可进行整体浸洗。
3、防止振动放大
对有抗振要求的继电器,合理选择安装方式可避免或减少振动放大,最好是将继电器安装成使继电器受到的冲击和振动的方向与继电器衔铁的运动方向相垂直,尽量避免选用顶部螺钉安装或顶部支架安装的继电器。
4、多只继电器集中安装方法
多只继电器密集安装于同一印制板或同一机架,它们可以产生反常的高热,无磁屏蔽罩子的继电器还可能因受磁干拢而动作失误,这可以通过合理设计各继电器之间的安装间隙,或把其它元器件安装到各只继电器中间(但不得是强发热和产生强磁场的元件以及怕热和磁干拢的元器件)来解决。
继电器
继电器的保护
1、线圈保护
只要条件允许,应使继电器线圈和铁心无论在线圈导通或断开时都处于等电位,以避免电化学腐蚀。
2、触点保护
继电器触点保护线路很多,对电感性负载通常采用负载并联二极管消火花,与触点并联RC吸收网络或压敏电阻来保护触点。对容性负载、灯负载通常采用在负载回路串联小阻值功率电阻或串联RL抑制浪涌电流的冲击。、
发展历史
在18世纪的时候,科学家们还认为电和磁是风马牛不相及的两种物理现象。1820年丹麦物理学家奥斯特发现电流的磁效应后,1831年英国物理学家法拉第又发现了电磁感应现象。这些发现证实了电能和磁能可以相互转化,这也为后来的电动机和发电机的诞生奠定了基础;人类则因这些发明创造从此迈入电气时代。19世纪30年代,美国物理学家约瑟夫·亨利在研究电路控制时利用电磁感应现象发明了继电器。最早的继电器是电磁继电器,它利用电磁铁在通电和断电下磁力产生和消失的现象,来控制高电压高电流的另一电路的开合,它的出现使得电路的远程控制和保护等工作得以顺利进行。继电器是人类科技史上的一项伟大发明创造,它不仅是电气工程的基础,也是电子技术、微电子技术的重要基础。
种类举例
继电器的种类很多,按输入量可分为电压继电器、电流继电器、时间继电器、速度继电器、压力继电器等,按工作原理可分为电磁式继电器、感应式继电器、电动式继电器、电子式继电器等,按用途可分为控制继电器、保护继电器等,按输入量变化形式可分为有无继电器和量度继电器。
有无继电器是根据输入量的有或无来动作的,无输入量时继电器不动作,有输入量时继电器动作,如中间继电器、通用继电器、时间继电器等。
量度继电器是根据输入量的变化来动作的,工作时其输入量是一直存在的,只有当输入量达到一定值时继电器才动作,如电流继电器、电压继电器、热继电器、速度继电器、压力继电器、液位继电器等。
电磁式继电器
在控制电路中用的继电器大多数是电磁式继电器。电磁式继电器具有结构简单,价格低廉,使用维护方便,触点容量小(一般在SA以下),触点数量多且无主辅之分,无灭弧装置,体积小,动作迅速、准确,控制灵敏、可靠等特点,广泛地应用于低压控制系统中。常用的电磁式继电器有电流继电器、电压继电器、中间继电器以及各种小型通用继电器等。
电磁式继电器的结构和工作原理与接触器的相似,主要由电磁机构和触点组成。电磁式继电器有直流和交流两种。在线圈两端加上电压或通人电流,产生电磁力,当电磁力大于弹簧反力时,吸动衔铁使常开常闭接点动作;当线圈的电压或电流下降或消失时衔铁释放,接点复位。
热继电器
热继电器主要是用于电气设备(主要是电动机)的过负荷保护。热继电器是一种利用电流热效应原理工作的电器,它具有与电动机容许过载特性相近的反时限动作特性,主要与接触器配合使用,用于对三相异步电动机的过负荷和断相保护三相异步电动机在实际运行中,常会遇到因电气或机械原因等引起的过电流(过载和断相)现象。如果过电流不严重,持续时间短,绕组不超过允许温升,这种过电流是允许的;如果过电流情况严重,持续时间较长,则会加快电动机绝缘老化,甚至烧毁电动机,因此,在电动机回路中应设置电动机保护装置。常用的电动机保护装置种类很多,使用最多、最普遍的是双金属片式热继电器。双金属片式热继电器均为三相式,有带断相保护的和不带断相保护的两种。
时间继电器
时间继电器在控制电路中用于时间的控制。其种类很多,按其动作原理可分为电磁式、空气阻尼式、电动式和电子式等,按延时方式可分为通电延时型和断电延时型。空气阻尼式时间继电器是利用空气阻尼原理获得延时的,它由电磁机构、延时机构和触头系统3部分组成。电磁机构为直动式双E型铁心,触头系统借用I-X5型微动开关,延时机构采用气囊式阻尼器。
可靠性
1、环境对继电器可靠性的影响:继电器工作在GB和SF下的平均故障间隔时间最高,达到820000h,而在NU环境下,仅60000h。
2、质量等级对继电器可靠性的影响:当选用A1质量等级的继电器时,平均故障间隔时间可达3660000h,而选用C等级的继电器平均故障间隔时间为110000,其间相差33倍,可见继电器的质量等级对其可靠性能的影响非常大。
3、触点形式对继电器可靠性的影响:继电器的触点形式也会对其可靠性产生影响,单掷型继电器的可靠性都高于相同刀数的双掷型继电器,同时随刀数的增加可靠性逐渐降低,单刀单掷继电器的平均故障间隔时间是四刀双掷继电器的5.5倍。
4、结构类型对继电器可靠性的影响:继电器结构类型共有24种,不同类型均对其可靠性产生影响。
5、温度对继电器可靠性的影响:继电器工作温度范围在-25~70℃之间。随着温度的升高,继电器的平均故障间隔时间逐渐下降。
6、动作速率对继电器可靠性的影响:随着继电器动作速率的提高,平均故障间隔时间基本呈指数型下降趋势。因此,若设计的电路要求继电器的动作速率非常高,那么在电路维修时就需要仔细检测继电器以便及时对它更换。
7、电流比对继电器可靠性的影响:所谓电流比是继电器的工作负载电流与额定负载电流之比。电流比对继电器的可靠性影响很大,尤其当电流比大于0.1时,平均故障间隔时间迅速下降,而电流比小于0.1时,平均故障间隔时间基本不变,因此在电路设计时应选用额定电流较大的负载以降低电流比,这样可保证继电器乃至整个电路不因工作电流的波动而使可靠性降低。
新型继电器
新型继电器是指为了适应新提出的特殊要求,满足特殊环境条件下的使用而研制生产出的电磁式继电器,其主要特点是体积小、质量轻、耐振动、抗冲击、负载范围从低电平负载到5A、28 V额定负载,产品有可靠性指标(失效率等级)要求,产品采用电阻熔焊或激光熔焊密封的气密式密封结构,主要应用于电子控制设备中的信号传递和弱电功率切换。
新型电磁式继电器包括:非磁保持继电器和磁保持继电器。非磁保持继电器是一种单稳态继电器,继电器线圈在规定的电压激励量作用下,其触点输出状态改变,但在线圈激励撤销后,触点输出状态复原到初始状态。磁保持继电器是一种双稳态继电器,分单线圈结构和双线圈结构,线圈激励为电脉冲方式。对单线圈结构继电器,当线圈在规定的电压激励量作用下其触点输出状态改变,线圈激励撤销后,触点能保持已有状态,要改变触点输出状态,需对线圈加一规定的反向电压激励量。对双线圈结构继电器,当第一线圈在规定的电压激励量作用下其触点输出状态改变,线圈激励撤销后,触点能保持已有状态,要改变触点输出状态,需对第二线圈加规定的电压激励量。
由于新型继电器具有的特殊性能,它的检测方法和检测要求也不同于常规继电器的检测。主要检测的内容有电气参数检测、电气性能指标检测、机械性能指标检测和物理性能指标检测等。
免责声明
意见反馈
©2021 baike.com
赞 (0)