邓启龙——函数极值点偏移问题的本质探究
函数极值点偏移问题的本质探究
广东省中山纪念中学(528454)邓启龙
函数极值点偏移问题是近几年高考的热点,也是高考复习中的重点和难点,而处理极值点偏移问题,也有一些成熟有效的方法,比如构造对称函数、利用对数平均不等式等.本文通过对函数极值点偏移问题的本质进行探究,得到了处理函数极值点偏移问题的一种新方法.
1.极值点偏移
但是以上推导不能代替证明,笔者经过深入探究,得到以下定理并严格证明.
3.典型例题
下面给出几个典型的函数极值点偏移问题,并结合本文的定理加以分析.
例1(2016·全国卷Ⅰ理·21)
函数极值点偏移问题是考查导数的一种常见的题型,本文通过直观推理和严格证明对函数极值点偏移问题的本质进行探究,得到了判定函数极值点偏移的非常有效的方法.
参考文献
[1]邢友宝.极值点偏移问题的处理策略[J].中学数学教学参考(上旬),2014(7):19-22.
[2]陈宽宏.对数平均与高考压轴题[J].数学通讯(下半月),2012(11):34-37.
赞 (0)