MAT之PSO:利用PSO算法优化二元函数,寻找最优个体适应度
MAT之PSO:利用PSO算法优化二元函数,寻找最优个体适应度
实现结果
设计代码
figure
[x,y] = meshgrid(-5:0.1:5,-5:0.1:5);
z = x.^2 + y.^2 - 10*cos(2*pi*x) - 10*cos(2*pi*y) + 20;
mesh(x,y,z)
hold on
c1 = 1.49445;
c2 = 1.49445;
maxgen = 1000;
sizepop = 100;
Vmax = 1;
Vmin = -1;
popmax = 5;
popmin = -5;
for i = 1:sizepop
pop(i,:) = 5*rands(1,2);
V(i,:) = rands(1,2);
fitness(i) = fun(pop(i,:));
end
[bestfitness bestindex] = max(fitness);
zbest = pop(bestindex,:);
gbest = pop;
fitnessgbest = fitness;
fitnesszbest = bestfitness;
for i = 1:maxgen
for j = 1:sizepop
V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax)) = Vmax;
V(j,find(V(j,:)<Vmin)) = Vmin;
pop(j,:) = pop(j,:) + V(j,:);
pop(j,find(pop(j,:)>popmax)) = popmax;
pop(j,find(pop(j,:)<popmin)) = popmin;
fitness(j) = fun(pop(j,:));
end
for j = 1:sizepop
if fitness(j) > fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end
if fitness(j) > fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
end
yy(i) = fitnesszbest;
end
[fitnesszbest, zbest]
plot3(zbest(1), zbest(2), fitnesszbest,'ro','linewidth',1.5)
title('粒子群算法:绘制的目标函数三维网格图,红圈为最优点—Jason niu')
figure
plot(yy)
title('PSO:利用粒子群算法实现对目标函数寻找最优个体适应度—Jason niu','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
相关文章
PSO:利用PSO算法优化二元函数,寻找最优个体适应度
赞 (0)