压轴题打卡18:数形结合有关的存在型几何综合问题

如图,四边形OABC是矩形,点B的坐标为(8,6),直线AC和直线OB相交于点M,点P是OA的中点,PD⊥AC,垂足为D.
(1)求直线AC的解析式;
(2)求经过点O、M、A的抛物线的解析式;
(3)在抛物线上是否存在Q,使得S△PAD:S△QOA=8:25,若存在,求出点Q的坐标,若不存在,请说明理由.
参考答案:
考点分析:
二次函数综合题;代数几何综合题。
题干分析:
(1)先求出A、C两点的坐标即可求出直线AC的解析式;
(2)求出O、M、A三点坐标,将三点坐标代入函数解析式便可求出经过点O、M、A的抛物线的解析式;
(3)根据题意先求出Q点的y坐标,在根据Q在抛物线上的关系求出Q点的横坐标,便可得出答案.
解题反思:
本题是二次函数的综合题,其中涉及的到的知识点有抛物线的公式的求法和三角形的相似等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.
(0)

相关推荐