主流国际OEM/TIRE1电子电气架构
1
逻辑功能架构
图1 功能分配
功能的实现
2
网络架构
整车网络架构
3
电气架构
电气架构
大众:MEB平台的电子电气架构
4
MEB是什么?
5
MEB电子电气架构
MEB电子电气架构图
ICAS1内的数据保护
对于MEB的电子电器架构而言,大众直接从MQB的分布式直接跨入中央电脑,对于传统的车企而言,步子迈的还是很大的,毕竟软件不是传统车企的优势,从之前德国 Manager Magazin 报出的大众ID.3存在大量的软件问题,在2019年11月开始生产的ID.3没有配备正式的软件,离开装配线后,车辆必须暂时存放在专门租用的停车位。
大陆:汽车电子电器架构思考
架构发展
网络拓扑对比
数据特性对比
TSN类型对比
安波福:SVA架构解析
为了满足自动驾驶和电气化对整车E/E架构高安全性、高数据吞吐能力等的要求,安波福提出了SVA(smart vehicle architecture)架构。在SVA中,至少有两份蓄电池和供电电路确保关键部件的供电安全,通过优先考虑安全相关的数据流量,来确保网络的稳定性,此外多路径拓扑保证数据在主路径异常的情况下,能通过备用路径传输至目标控制器。
对于大多数OEM来说,直接切换到一种全新的E/E架构几乎是不可能的,所以可以对现有E/E架构中单个组件采用SVA的理念,然后逐步渐进式的推广。
6
域替代分布式ECU
SVA的核心为可扩展性的网络概念,其可以应用不同的车载控制器,且满足L3至L5级的需求。如图1所示,该架构由几个主要的域控制器组成。当前采用该理念的是zFAS中央驾驶辅助控制器,它由安波福开发,并应用于奥迪A8。
SVA架构
未来类似于zFAS的高性能计算平台将接管处理内部和外部(Car2X,网络连接)数据的网关功能,信息娱乐功能等,同时由于其强大的性能,多个域计算平台可以互相对安全相关的驾驶功能进行备份。另外高性能平台可将当前架构中近100个ECU进行功能整合,降低E/E架构的复杂度。当前,由于处理器能力、功耗以及有待评估的数据量,整合至三个甚至两个计算平台还尚不能满足。
现代半导体技术和具有极高带宽的数据总线可满足技术先决条件。高达10 Gbit/s的以太网和HDBaseT仅仅是开始。安波福已经在研究传输速率为20至40Gbit/s的技术。另一种方案就是在区域控制器(zonal controller)中实现无损压缩和预评估,区域控制器主要用于接收数据,读取传感器的数据和控制分散在车上的执行器。安波福正在与合作伙伴一起研究以最小延迟时间进行压缩和解压缩的此类算法。然而,现有数据网络的带宽和传感器分辨率的提高以及更高的数据量之间的竞争,将仍然是自动驾驶进一步发展的基本特征。
7
PDC区域控制器
PDC(power data centers)是安波福正在开发的一种区域控制器。理想情况下,车辆的四个角处自动驾驶相关传感器的密度、电力需求都很高,对于安装有自动驾驶套件的车辆来说,可以考虑在B柱附近增加两个PDC。
PDC可以为周围的电子系统分配电源,收集并分发大量原始传感器数据到中央计算机,在中央计算机中对它们进行处理以实现自动驾驶命令。此外,PDC可以执行更简单的控制功能,例如灯光,音频系统,从而进一步减少控制单元的数量。
作为全新的系统,PDC具有带诊断功能功能的保险丝。尽管智能保险丝要比常规保险丝贵,但它的诊断能力提高了安全性,此外可配置的保险丝特性可以减小线束的平均截面积。
例如,PDC具有诊断供电电压的能力,通常SVA会有两个独立且隔离的蓄电池,它们能提供不能的电压(例如12V和48V),由于电源是通过环形拓扑分配到PDC,并从PDC分配给各子系统,因此PDC的智能熔断器可以通过快速准确地分析电流行为来检测短路,并关闭、隔离相关的网段。
8
灵活的数据交互
传感器、PDC和多域计算机之间的数据交互采用环形拓扑,因此在出现故障时,可以保证通过环形拓扑的另一分支进行供电和数据交互。安波福首选的传输技术是HDBaseT技术(8Gbit/s)或10Gbits以太网。此外,PDC通过星形CANFD网络链接到中央网关,因此在“唤醒”车辆后可以快速响应某些功能。
此外,SVA中为重要的传感器提供了交叉连接。例如,即使右前侧的PDC发生故障,右前侧的雷达传感器仍可以传送数据,因为它已连接到电源和左前侧的PDC。这种传感器群集使车辆的每个部分都能保持足够的信息深度。即使PDC发生故障,车辆也可以继续以受控方式安全停车-例如,停至停车场。
除了诊断能力,智能安全概念和能源管理之外,安波福的SVA还提供了功能安全性的特性,如图2所示。分区划分(因此减少了线束的使用)以及标准组件的广泛使用可以简化自动化生产,这也符合许多OEM的期望(他们不仅期望布线系统生产中更高水平的自动化,而且期望更高的制造质量和更低的成本)。最后,制造工艺和参数的可追溯性得到了改善。
SVA架构的功能安全特性
9
总结展望
由于对电子设备的高要求,首批全自动或辅助驾驶汽车的成本可能达六位数。借助SVA,安波福希望大幅降低L4级或L5级兼容E/E架构的成本。安波福认为,与目前的布线系统相比,完全实施SVA会使成本最高增加30%。
SVA发展路普
第一个支持SVA的组件已经开始研发,如图3。预计PDC大约需要五年SOP
大小约为平装本大小。从下个十年中期开始,第一批OEM可以实施全新的SVA。自动驾驶的出租车将担起先锋角色,由于最初将其大量用作车队车辆,因此很可能会计入最初的高昂成本。一旦智能架构经历了其第一个优化循环和成本下降后,就应考虑在下个十年的后半场将其广泛用于L4级私家车。