双因素方差分析 (无交互作用)
在实践中,我们所做的某种试验结果往往受到两个或两个以上因素的影响。比如工作效率受工作人员和工作设备和工作环境等的影响。如果我们研究的是两个因素的不同水平对试验结果的影响是否显著的问题就成为双因素方差析。双因素方差分析中两个因素既可能是相互联系、相互影响的,也可能是相互独立的,因此,在分析的方法和步骤上要比单因素复杂一些。双因素方差分析的基本思想和单因素方差分析大致相同。首先分别计算出总离差、各个因素的离差以及随机误差的离差;其次根据各离差相应的自由度求出均方差,最后计算出F值并做F检验。
需要注意的是,在两个因素的试验中,不但每一个因素单独对试验结果起作用,往往两个因素的不同水平组合还会产生一定的组合效应,称这种作用为交互作用或交互影响。双因素方差分析是根据两个因素相互之间是否具有交互影响而分为无交互作用和有交互作用两种情况。
我们先来用Excel演示一下无交互作用的双因素方差分析(此演示基于Excel 2013版本,其他版本可作参考),假如工作效率系数由工作人员以及电脑类型决定。
(1)、准备数据
(2)、在【数据】选项卡中单击【数据分析】命令:
在弹出的【数据分析】对话框中选择【方差分析:无重复双因素分析】工具:
单击【确定】按钮,这时弹出【方差分析:无重复双因素分析】对话框:
(3)、指定输入数据的有关参数:
输入区域:指定要分析的数据所在的单元格区域B2:F4
置信度:根据需要指定显著水平,本例输入α=0.05
输出选项:本例把结果输出到本工作表的B6单元格
单击确定结果如下:
根据上图给出的分析结果可知F(行)=0.092371<F0.05(2,8)=4.46,故在显著水平0.05下没有证据认为电脑品牌对工作效率有显著性差异,F(列)=0.706226<F0.05(4,8)=3.84,故在显著水平0.05下也没有证据认为人员对工作效率有显著性差异。(案例与结果仅供参考)
职场办公,快人一步!
有疑问或见解下方这里留言