【精品博文】Xilinx-7Series-FPGA高速收发器使用学习—TX发送端介绍

赢一个双肩背包

有多难?

戳一下试试看!

→_→

长摁识别

每一个收发器拥有一个独立的发送端,发送端有PMA(Physical Media Attachment,物理媒介适配层)和PCS(Physical Coding Sublayer,物理编码子层)组成,其中PMA子层包含高速串并转换(Serdes)、预/后加重、接收均衡、时钟发生器及时钟恢复等电路。PCS子层包含8B/10B编解码、缓冲区、通道绑定和时钟修正等电路。对于GTX的发送端来说,结构如图1所示。

图1

FPGA内部并行数据通过FPGA TX Interface进入TX发送端,然后经过PCS和PMA子层的各个功能电路处理之后,最终从TX驱动器中以高速串行数据输出,下面将介绍各个功能电路。

FPGA TX Interface(TX用户接口):TX Interface是用户数据发往GTX的接口,该接口的信号如表1所示。

表1

发送数据接口是TXDATA,采样时钟是TXUSRCLK2,在TXUSRCLK2的上升沿对TXDATA进行采样。TXUSRCLK2的速率由线速率、TX Interface接口位宽和8B/10B是否使能决定(TXUSRCLK2频率 = 线速率 /  TX_DATA_WIDTH ;比如线速率是10Gb/s,TX_DATA_WHDTH等于80,那么TXUSRCLK2的频率是125MHz)。TXDATA的位宽可以配置成16/20/32/40/64/80位宽,通过TX_DATA_WIDTHTX_INT_DATAWIDTHTX8B10BEN三个属性设置可以配置成不同的位宽,具体属性如表2所示。

表2

GTX的TX Interface分成内部数据位宽和FPGA接口位宽,其中内部数据归属于TXUSRCLK时钟域,FPGA接口数据归属于TXUSRCLK2时钟域,而内部数据位宽支持2byte/4byte,FPGA接口数据位宽支持2byte/4byte/8byte,因此,决定了TXUSRCLK和TXUSRCLK2有一定的时钟倍数关系,TXUSRCLK和TXUSRCLK2的时钟倍数关系如表3所示,其中TX_INT_DATAWIDTH属性设置为“0”,表示内部数据位宽为2byte,如果设置为“1”,则表示内部数据位宽为4byte(线速率大于6.6Gb/s的时候应当置“1”)。

表3

TXUSRLK和TXUSRCLK2时钟是相关联的,在时钟这两个时钟时应该遵循下面两个准则:

  1. 1.       TXUSRCLK和TXUSRCLK2必须是上升沿对齐的,偏差越小越好,因此应该使用BUFGs或者BUFRs来驱动这两个时钟(因为TX Interface和PCS子层之间没有相位校正电路或者FIFO,所以需要严格对齐,本人自己的理解)。

  2. 2.       即使TXUSRCLK、TXUSRCLK2和GTX的参考时钟运行在不同的时钟频率,必须保证三者必须使用同源时钟。

发送端的时钟结构:为了能够更好的理解GTX的发送端如何工作,理解发送端的时钟结构很有必要,图2是发送端的时钟结构图。

图2

其中红框部分和黄底部分的内容是我们需要重点了解的地方,图中的MGTREFCLK是上一篇中提到的GTX的参考时钟,经过一个IBUFDS_GTE2源语之后进入GTX,用以驱动CPLL或者QPLL。对于TX PMA来说,主要实现的功能是并串转换,其并串转换的时钟可以由CPLL提供,也可以由QPLL提供,由TXSYSCLKSEL选择,TX PMA子层里面有三个红色方框部分是串行和并行时钟分频器,作用是产生并行数据的驱动时钟,其中D分频器主要用于将PLL的输出分频,以支持更低的线速率。

÷2/÷4这个选项由TX_INT_DATAWIDTH决定,如果TX_INT_DATAWIDTH为“0”,则选择÷2,反之选择÷4。

对于÷4/÷5,则由TX_DATA_WIDTH决定,如果是位宽是16/32/64,则选择÷4,如果位宽是20/40/80,则选择÷5。

对于TXUSRCLK和TXUSRCLK2由谁驱动呢,官方推荐使用TXOUTCLK驱动,这样做能精简设计,同时稳定,如何使用TXOUTCLK来做TXUSRCLK和TXUSRCLK2的驱动时钟呢,根据TXUSRCLK和TXUSRCLK2的频率关系,以一个Lane为例,图3表示TXUSRCLK=TXUSRCLK2的驱动方式,图4表示TXUSRCLK = 2*TXUSRCLK2的驱动方式。

 图3

    

图4

对于图4,CLKOUT0的值为CLKOUT1的2倍。

       TX 8B/10B Encoder高速收发器的发送端一般都带有8b/10b编码器。目的是保证数据有足够的切换提供给时钟恢复电路,编码器还提供一种将数据对齐到字的方法,同时线路可以保持良好的直流平衡。在GTX应用中,如果发送的是D码,则需要将TXCHARISK拉低,如果是K码,则将相应的TXCHARISK拉高。

TX Buffer了解发送的TX Buffer的作用,首先得搞清楚TX发送端的时钟域,TX发送端的时钟域如图5所示。

图5

图5中红色方框就是TX Buffer,我们都知道FIFO具有隔离时钟域的功能,在这里也不例外,我们从图中可以知道,TX Buffer连接着两个不同的时钟域XCLK和TXUSRCLK,在发送端的PCS子层内部包含两个时钟域,XCLK(PMA并行时钟域)TXUSRCLK时钟域,为了数据发送的稳定,XCLK和TXUSRCLK必须是速率匹配,相位差可以消除的,TX Buffer主要用于匹配两时钟域的速率和消除两时钟域之间的相位差。

TX Buffer也可以被旁路,TX发送端提供了一个相位对齐电路,可以解决XCLK和TXUSRCLK时钟域之间的相位差,但是TX_XCLK_SEL需设置为“TXUSR”来保持XCLK时钟域和TXUSRCLK保持同频。

TX Pattern GeneratorGTX拥有伪随机数列产生电路,伪随机数列是之中看似随机,但是是有规律的周期性二进制数列,有良好的随机性和接近白噪声的相关函数,所以伪随机数列可以用来做误码率测量、时延测量、噪声发生器、通信加密和扩频通信等等领域,在GTX中可以用来测试高速串行通道传输的误码率,图6是GTX的PRBS生成电路。

图6

可以使能或者旁路这个PRBS生成电路,如果旁路的话TXDATA会传输到发送端的PMA。一般使用PRBS模式测试模型如图7所示。

图7

TX Polarity ControlTX发送端支持对TX发送的数据进行极性控制,从PCS子层输出的编码数据在进入PISO串行化之前进行极性翻转,这部分功能主要是用来弥补PCB的设计错误,如果PCB设计时不慎将TXP和TXN交叉连接的话,可以通过设置TXPOLARITY为“1”来翻转信号的极性。

(0)

相关推荐

  • PCIe和XAUI协议时钟架构应用实例

    引言:本文我们介绍GTX/GTH收发器时钟架构应用,该文内容对进行PCIe和XAUI开发的FPGA逻辑设计人员具有实际参考价值,具体介绍: PCIe参考时钟设计 XAUI参考时钟设计 1.PCIe参考 ...

  • sensor接口之DVP

    什么是DVP DVP(Digital Video Port) 是传统的sensor输出接口,采用并行输出方式,d数据位宽有8bit.10bit.12bit.16bit,是CMOS电平信号(重点是非差分 ...

  • 【博文连载】Xilinx-7Series-FPGA高速收发器使用学习—概述与参考时钟篇

    Xilinx的7系列FPGA根据不同的器件类型,集成了GTP.GTX.GTH以及GTZ四种串行高速收发器,四种收发器主要区别是支持的线速率不同,图一可以说明在7系列里面器件类型和支持的收发器类型以及最 ...

  • 【精品博文】Xilinx-7Series-FPGA高速收发器使用学习—RX接收端介绍

    赢一个双肩背包 有多难? 戳一下试试看! →_→ 长摁识别 接上文:Xilinx-7Series-FPGA高速收发器使用学习-TX发送端介绍 上一篇博文介绍了GTX的发送端,这一篇将介绍GTX的RX接 ...

  • 【精品博文】关于FPGA处理中断

    所有的入门的屌丝都是知道处理器中断模式是两种是边沿触发和电平触发. 边沿触发用的很少,一般还是以下降沿触发为主.当设备完成一个数据后,会输出一个下降沿,触发处理器.而电平触发,是输出一个电平,并且会保 ...

  • 【精品博文】高级FPGA设计——第五章:复位电路

    复位极端重要,但是却常常容易被忽略.在这一章,我们就来聊聊复位的事. 1,同步复位和异步复位 众所周知,复位操作包括同步复位和异步复位.我们先来了解下两者存在的问题. 1.1 完全异步复位的问题 完全 ...

  • 【精品博文】高级FPGA设计——第四章:跨时钟域问题

    在FPGA设计中,不太可能只用到一个时钟.因此跨时钟域的信号处理问题是我们需要经常面对的. 跨时钟域信号如果不处理的话会导致2个问题: (1) 若高频率时钟区域输出一个脉冲信号给低频率时钟区域,则该脉 ...

  • 【精品博文】高级FPGA设计——第三章:功耗结构设计

    除了速度和面积外,数字设计中还有另外一个主要特性:功耗. 在CMOS技术中,动态功耗与门和金属引线的寄生电容充放电有关.在电容中消耗电流的一般方程为:I=V*C*f (其中I是总电流,V是电压,C是电 ...

  • 【精品博文】高级FPGA设计——第二章:面积结构设计

    在上一章中,我们提到速度是FPGA设计中的重要特性,现在要说说另一重要特性:面积. 面积过大意味着成本的提升,对FPGA以及ASIC都是如此.因此,我们需要竭力控制面积,可采用以下方法: 1,折叠流水 ...

  • 【精品博文】高级FPGA设计——第一章:高速度结构设计

    我们使用FPGA,除了实现预期功能之外,最关心的就是系统运行的速度,这是我们使用FPGA的最重要的原因. FPGA中速度包含3个指标: 流量(Throughput):每个时钟周期处理的数据量,度量为每 ...

  • 【精品博文】关于FPGA图像处理算法验证板

    淘宝网和电子论坛,卖开发板都是烂大街了.说实在的,视频处理开发板也是挺多的.但是说实在,总感觉很多fpga图像处理板子,无非简单利用摄像头做做图像插值,滤波器,二值化处理. 但真正项目有这么简单吗?图 ...