【总结】循序渐进,有三AI不得不看的技术综述(超过100篇核心干货)
有三AI很少写零散的报导,因为我们的文章通常都是提炼与总结,一般遇到一个新方向,找技术综述读一读是最合适的开始,大家也可以拓展一下自己的知识边界,今天总结一下有三AI迄今为止发过的技术综述类文章,也欢迎大家来投稿原创。
CV算法工程师指导手册
《深度学习视觉算法工程师成长指导手册》,超过11万字,360页word文档,可下载收藏打印,且还有大约1/3内容并未完结,最终可能超过20万字,相当于一本400页左右的书(已经确定会编撰成书),发送关键词“三人行必有AI”到公众号即可先睹为快。
本手册以深度学习视觉算法工程师为例,借鉴广泛采用的评级机制,分为4个大境界,即白身,初识,不惑,有识。每一个境界都由浅入深提供10多篇文章对核心知识点进行梳理,并对技术发展的最新水平进行简单介绍和展望,目前已经超过30期文章。
自然语言处理算法核心技术
这里共包括12篇文章,从NLP中常用的机器学习算法开始,介绍了NLP中常用的算法和模型。从朴素贝叶斯到XLnet,从RNN到transformerXL。公众号已经有很多的NLP相关的内容了,覆盖理论和实战,欢迎大家阅读。
GAN
被誉为新一代深度学习的生成对抗网络GAN,在近几年是实实在在的学术界和工业界宠儿,其中最核心基础的内容便是优化目标了。首先我们从基本的对抗损失,到各种训练技巧进行了总结,这个综述你值得阅读,第二季已经开始更新。
同时有三在很早的时候对GAN的应用和结构也开始做一些总结,GAN在人脸图像领域和底层图像处理领域里已经颇有建树,我们详细总结了它的各个应用方向及其一些关键技术要点,大家可以查看我们的GAN总结,以及相关技术综述。
AutoML与模型优化
自从Google提出AutoML技术以来,已经过去了好几年了,如今在学术界和工业界都是热点。AutoML在网络结构的搜索上已经取得了非常多的突破,相关的文章,技术博客都已经广为流传,那么除了在网络结构本身的搜索上,AutoML技术对于深度学习模型的优化还有哪些贡献呢?我们简要总结了这个问题,并贡献了一些资料。
模型设计与优化
相比于学术理论研究,深度学习更是一门工程应用技术,其中最重要的一块内容就是模型,迄今为止为了让大家更好地掌握深度学习模型设计和优化,我们做了非常多的工作,剖析深度学习中各类具有代表性的CNN模型,详细分析了各类模型的特点,设计思想。从图文,到视频直播,到知识星球,应有尽有!
【杂谈】为了让大家学好深度学习模型设计和优化,有三AI都做了什么
有三AI开源项目
人脸图像研究领域
人脸图像属于最早被研究的一类图像,也是计算机视觉领域中应用最广泛的一类图像,可以说掌握好人脸算法,基本就玩转了计算机视觉领域。在经历了几十年的发展后,现在人脸图像都有哪些研究和应用领域呢?本文从人脸特征,人脸检测,人脸关键点检测,人脸识别,人脸属性分析,人脸分割,人脸美颜,人脸编辑与风格化,三维人脸重建等方向来进行简单介绍。文末覆盖若干综述,系统性文章阅读。
另外对人脸的数据集也进行了详细解读,当时文章都险些超过公众号最大长度。
图像分类核心技术
图像分类这个计算机视觉领域里最基本的问题真的很简单吗?恐怕大部分人接触的只是其中简单的内容。从基本的分类到多标签,细粒度,对抗攻击和不平衡样本处理,真正认识一下图像分类或许你需要这个16篇文章的总结,其中还包括了若干篇综述。
视频分类综述
视频虽是由多帧的图像组成,但视频分类任务与图像分类任务终究不同。此综述从传统方法和深度学习方法,数据集等维度对视频分类方法做了完整总结介绍。
数据增强综述
很多实际的项目,我们都难以有充足的数据来完成任务,要保证完美的完成任务,有两件事情需要做好:(1)寻找更多的数据。(2)充分利用已有的数据进行数据增强,这里就是对当前数据增强方法的综述,覆盖有监督无监督,单样本多样本方法等,数据增强的重要性你越做就越懂。
另外,关于如何掌握深度学习中数据的使用,也给出了一些建议,知识星球中提供了许多重要资源下载链接。
12大主流图像分割模型
介绍完基本的模型架构之后,我们又紧接着介绍了12大主流的图像分割模型架构,对于做分割的你来说,不可错过。
闲聊图像分割
有三做的时间最久的就是图像分割了,从传统的阈值法,聚类,图割,水平集,到深度学习,这里就是我对图像分割算法的大总结。
弱监督图像分割综述
接着图像分割综述,我们又总结了弱监督图像分割综述,欢迎继续学习。
可视化
深度学习模型是个黑盒子,我们可以从网络结构,权重,训练曲线等各个维度进行可视化来理解它的学习过程和工作机制。
softmax loss解读
softmax loss是我们最熟悉的loss之一了,分类任务中使用它,分割任务中依然使用它。在这里,我们推导它的公式,总结了它的变种,尤其是在人脸识别任务中的应用。
Faster RCNN源代码解读
鉴于网络上目标检测的技术综述太多,我们没有再继续写作,而是解读了最优秀的目标检测框架之一Faster R-CNN, 详细剖析了各个模块的源代码。
美学研究
何以为美,从自拍到颜值到通用的美学问题,这是一个永远都没有答案,但是又迷人的话题,一切都才刚刚开始。
自动构图
作为一个摄影爱好者,研究构图是有三的一大乐趣,将AI技术用于构图,更是有着广阔的应用前景,如果你也喜欢,不要错过噢。
国内AI研究院就业总结
在这个专栏中,我们和大家一起分享了国内12大研究院的背景,从最开始介绍的历史最悠久的微软亚洲研究院,到最后介绍的低调务实的网易人工智能,带大家领略了每个研究院的研究方向,团队情况,欣赏了各大研究院的拳头产品。
优秀的深度学习从业者习惯
一个优秀的深度学习从业者,必然是技能全面,擅长学习的人,在这里我们总结了从看论文到写代码,从刷论坛到刷比赛的一系列资源供大家挑选学习,几乎覆盖了所有学习资料和方法,而且还在不断更新。
知识星球生态
有三AI知识星球是有三AI的重点私密社区,从模型到数据,从机器学习到深度学习,从理论到实战,是公众号内容的补充和升华,可以更自由的交流和学习。仅仅模型架构就已经有超过几百期的解读,数据集也已经有上T容量的共享。
其实除了以上综述类的文章,还有一些虽然没有标注为总结或者综述但实际上也是综述的文章,包括图像降噪,人脸的各个领域,已经被包含在各类文章中,就不一一点破了,喜欢的朋友自己去找找吧,这是一个很大的矿。
另外,还有关于公众号的一些非技术文章的总结,有助于了解生态,也欢迎阅读。
生态总结
有三AI原创生态已经很庞大,覆盖技术文章,产品,人才培养等,接下来是一些重要的总结,包括创办初衷,一周年总结,2019年年终总结,人才培养体系。
现如今我们坚持不接广告,只做原创,系统输出,已经有超过500期文章了,在这里诚意邀请喜欢分享原创内容的同学加入,成为专栏作者,不仅可以督促自己学习,还可以获得个人收入以及平台的资源扶持。
三人行,必有AI,一起发光发热,变得更好!
转载文章请后台联系
侵权必究