如何学好高中物理(中)?这是我见过最硬核的答案

高中物理 2021-02-03

14

库仑定律

任何两个有质量的物体之间都有引力,这个引力由万有引力定律描述。

类似的,任何两个有电荷(带有正电或者负电的粒子)之间都有一种电力,这种力叫库仑力(一个叫库仑的人先发现的),它由库仑定律描述。

比如,假设两个电子的电荷量分别为q1、q2,它们之间的距离为r。那么,这两个电子之间就存在一个互相排斥(同性相斥,异性相吸)的库仑力F。

有了前面猜万有引力定律的经验,库仑定律就很容易猜了。

类似的,很显然应该是电荷量越大,库仑力越大,所以库仑力的大小应该和电荷量的乘积正比

因为处在三维空间,所以库仑力跟万有引力类似,也跟电荷之间距离的平方成反比。

这样我们轻轻松松就能把描述两个电荷之间库仑力的公式,也就是库仑定律写出来了:

大家看看这个式子,是不是跟万有引力定律极其相似呢?

不过就是把万有引力定律里两个物体的质量m1、m2换成了电荷量q1、q2,万有引力常数G变成了这里的库仑常数k。

但是,库仑定律万有引力定律有一个非常大的差别:所有物体的万有引力都是相互吸引的,没有第二种方向;电荷之间的库仑力却有方向,同性相斥,异性相吸

也就是说,如果两个电荷都带负电(比如两个电子),那它们就互相排斥;如果一个带正电一个带负电(比如一个质子一个电子),那它们就互相吸引

很多中学生在学习万有引力定律库仑定律时,惊讶于它们之间的高度相似,就想着能不能把它们统一起来。但是,就是这个符号的差别,让它们的统一工作难如登天,爱因斯坦后半辈子都在琢磨这个事,直到去世都拿它没办法。

引力的这种无符号性(只有吸引)极其特殊,它仿佛在暗示我们:在引力眼里,众生平等。引力似乎是一个背景,一个舞台,它对台上所有的演员都一样,不偏不倚。这种思想后来启发爱因斯坦创立了广义相对论

于是,我们就知道了引力之外的另一种力:库仑力,它当然也是电磁力

我们可以用库仑定律描述两个电荷之间库仑力的大小,但是,高中很少会让你直接用库仑定律做计算,因为这个公式比较麻烦,不好出题

你看啊,库仑力是跟距离的平方成反比的。因此,如果某个电荷在库仑力作用下开始运动,一动距离就要变了吧?距离一变,这个库仑力会按照距离的平方跟着变,那就意味着电荷的受力情况也变了。

受力变了距离又要变,距离变了受力再变,如此循环下去。这显然超出了中学物理能够处理的范围。

你可能觉得奇怪,万有引力定律库仑定律一样,也是平方反比。那为什么中学可以出引力的题目,出苹果下落的题目,却不能出这种库仑力的题目呢?

对啊,为什么呢?要不,给你一分钟时间考虑一下~

因为,我们在地面处理引力问题时,基本上只考虑物体地球之间的引力。

地面,物体的运动距离(比如苹果树的3米)相对地球半径而言太小了,所以我们完全可以忽略物体和地球之间的距离变化,认为距离r不变的。

如果距离r不变,那物体和地球之间的引力就是一个恒力。这样产生的加速度也恒定,物体就会做最简单的匀加速运动,这是中学可以处理的。

因为引力,只有大到地球这个尺度才会产生显著的引力效应,所以我们才能忽略地面物体的运动距离,认为地球引力是一个恒力。而电磁力是非常的,你完全无法忽略这个距离r的变化,也就没法把库仑力也当作一个恒力

电磁力引力强多少呢?如下图,随便一个吸铁石就能把一堆硬币吸起来:

这意味着什么呢?

这些硬币能够被吸上去,就意味着:这么一个小小的磁铁与硬币之间电磁力,竟然比整个地球与硬币之间的引力还要大

一个磁铁施加的电磁力,就能打败整个地球施加的引力,你说电磁力比引力强多少?这样你就能明白为什么中学物理无法处理库仑力作用下的电荷运动了吧?

运动会导致库仑力发生改变,这样电荷的加速度也会随之改变,这是非常复杂的变加速运动,没有微积分根本处理不了,高中物理能勉强处理加速度不变的匀加速运动。

于是乎,虽然我们知道了库仑定律,知道了如何计算两个电荷之间的库仑力。但很可惜,库仑力作用下的电荷运动过于复杂,没有微积分我们根本处理不了,怎么办?

电磁力这么重要,我们当然不能丢下它不管。库仑力作用下的电荷运动因为受力过于复杂而无法处理,那我就把受力情况搞简单一点,也给你一个大小恒定的电磁力,行不行?

行啊!如果电磁力成了恒力,那电荷的加速度就不变了。这样,问题就也变成简单的匀加速运动,与苹果下落别无二致,so easy!

那么,怎样把电磁力简化为恒定大小的力呢?

这就需要引入一个全新的概念:

15

场的引入

是个非常非常重要的概念,库仑发现库仑定律时(1785年)还没有场,它是法拉第(1791年~1867年)最先提出来的。

麦克斯韦后来用精准的数学语言描述了法拉第的思想,得到了能够描述一切经典电磁现象的麦克斯韦方程组

为什么需要场呢?我们先来看看没有场的时候,大家是怎么描述力的传递过程的,以万有引力定律(或者类似的库仑定律)为例:

这个定律我们已经很熟悉了,它告诉我们两个物体之间的引力跟它们的质量成正比,跟距离的平方成反比。我们只要知道两个物体的质量m1、m2以及它们之间的距离r,代入公式,立马就能求出它们之间的引力(库仑力也一样)。

问题就出在这个不起眼的“立马”上。

你想,根据公式,是不是只要两个物体的质量和距离一确定,它们之间的引力立马就确定了(质量距离一确定,引力立马就能算出来)?如果两个物体的质量发生了一丁点改变,它们之间的引力也会立马发生改变,中间不需要任何时间,整个过程是瞬间完成的。

也就是说,根据万有引力定律,引力的变化是超距的,无论多远都能瞬时完成。

举个例子,假设我们根据万有引力定律算出了地球太阳之间的引力,因为有这么一个吸引力,地球才会围着太阳转。那么,如果太阳的质量突然发生了改变(或者极端点,太阳突然消失了),那根据万有引力定律,太阳的质量突然改变了,太阳和地球之间的引力也会突然改变。

然而,我们都知道一个事实:光从太阳发射到地球大概需要8分钟。也就是说,我们现在看到的太阳光其实是8分钟以前的太阳发出的。

那么,如果太阳的质量突然发生了改变,你觉得地球是立马就感觉到引力发生了变化,还是也要等一段时间(比如8分钟)之后才能感受到引力的变化?

这其实就是在问:引力到底是不是瞬时超距的?它能否超越空间,瞬间从一处传到另一处?

直观来看,我们当然难以接受一个力的传播不需要时间,难以接受一个力瞬间就能从非常遥远的地方传过来。你想想,如果银河系外某个生物打了一个响指,瞬间就能影响地球人的生活,那得有多可怕?

不光我们难以接受力的超距传播,牛顿一样难以接受,虽然他写下的万有引力定律是超距的。

那怎么办?从信念上来看,牛顿不相信力能够超距传播,但是超距的万有引力定律工作得非常好,能够精准描述当时已知的一切引力现象。

于是,牛顿不怀好意地写到:我把这个问题留给读者。

当然,牛顿的信念是对的,引力的确不能超距传播,而是跟光一样,也以光速传播。最终解决这个问题的是他的忠实读者爱因斯坦,但解决这个问题的起点,确是法拉第和他提出的场。

提到法拉第,大家立马就会想到电和磁。那么,为什么是法拉第最先想到了,想到了一种限制超距传播的办法?明明牛顿自己就意识到了超距的引力是不对的,为什么牛顿同时代的科学家没有想去找场这样一种解决方案呢?

原因是速度

牛顿时代,对电和磁的研究还没有开始,大家研究的都是一些低速(相对光速)现象。不管是地球围着太阳转,还是苹果下落,这个速度相对光速(30万km/s)都是极小的,可以忽略不计。

但是,法拉第-麦克斯韦时代研究的电磁现象,就是高速现象了(你按下开关,灯立马就亮了)。

力的确不会超距传播,但牛顿研究的都是低速现象,所以这个“误差”极小,于是超距下的万有引力定律依然具有极高的精度。

但到了电磁世界,这个“误差”,不,这已经不叫误差了,这就是错误。

因此,一个正确的电磁理论,必须要求你能抛弃力的超距传播图景,这才逼出了法拉第的场和麦克斯韦的方程组。

相信大家多多少少也听过,牛顿力学只在低速宏观时适用,一旦进入高速世界,我们就得使用精度更高的相对论力学。而法拉第-麦克斯韦的电磁理论本来就是高速理论,所以它可以不做任何修改就直接被相对论接纳。

有了的概念,力的传播图景就发生了重大变化:力的作用不再是瞬时的,而是借助场这个“中介”以一定速度完成的。

还是以两个电荷之间的库仑力为例,库仑定律和万有引力定律那么相像,一开始人们当然觉得两个电荷之间的库仑力也是超距的。认为一个电荷的电荷量发生了改变,另一个电荷受到的库仑力立马就会改变。

有了场以后,两个电荷相互作用的图景就变成了这样:一个电荷在空间中建立了电场,另一个电荷因为处在这个电场里,于是就会受到了一个电场力(代替原来的库仑力)的作用。

如果电荷移动了,或者电荷量发生了改变,那它在空间中建立的电场也会发生改变,但这个改变是以光速进行的。于是,当改变的电场以光速传到另一个电荷那里时,它受到的电场力才会改变。

看到没有,现在两个电荷之间的力并不会随着一个电荷的改变而立马发生改变。电荷只能改变它产生的电场,电场的变化以光速向四周传播,它什么时候传到另一个电荷那里,电荷受到的电场力才会改变。

这就好比你在水边击起了一个水波,这个水波不会立马影响我,它需要等这个水波传到我这里时才会影响我,电场亦然。

于是,有了场,超距的电磁力就消失了。

明白了引入场的意义,我们再来感受一下场。对最直观的认识,莫过于“磁铁周围撒铁屑”的实验:

在磁铁周围撒一点小铁屑,小铁屑的形状就非常完美地展现了磁铁周围的磁场分布,因为磁场会对身处其中的小磁针有一个力的作用

电场也一样,带电物体会在周围的空间里产生一个个电场,而电场又会对身处其中的电荷产生一个力的作用。

这样,再考虑一个电荷受到了什么力,就只要考虑电荷这里的电场磁场就行了,不用再管远处的其它电荷。

这不仅解决了力的超距传播难题,也让我们终于可以在中学物理框架内处理电磁力问题。

为什么呢?前面说了,库仑力的大小是随距离变化的,这就导致了库仑力作用下的电荷运动会变成非常复杂的变加速运动,中学物理没法处理。

现在有了场,一个电荷就只对它周围的电场负责,而不用再管库仑力。

那么,只要保证电场是均匀的,就能保证电荷受的力是恒定的,这样电荷的运动就能变成简单的匀加速运动

16

简单的力

于是,我们终于可以把电磁力的题目出得让中学生也可以做了:我直接给你一个匀强电场(电场强度处处相等),这电场怎么来的我不管。

假设这个电场的强度为E,那电荷q在这个电场里受到的电场力F就是电荷量和电场强度的乘积,即F=qE。

如果电荷的质量为m,那根据牛顿第二定律F=ma,电荷的加速度a=F/m=qE/m,是个定值,完美。

所以,这就是一个简单的匀加速问题,跟苹果下落别无二致。只不过,苹果下落的加速度是重力加速度g,电荷在匀强电场中的加速度为qE/m,其它都一样。

于是,在引力之后,我们又出现了另一个非常常见的力:电场力

此外,运动电荷在磁场中会受到一个大小恒定的洛伦兹力。假设电荷的带电量为q,速度为v,磁场的磁感应强度(由于历史原因无法叫磁场强度)为B。那么,它受到的洛伦兹力F可以表示为:F=qvB。

除了电场力洛伦兹力,还有两个力也经常碰到:摩擦力弹力

虽然它们的本质都是电磁力,都是大量分子间作用力的宏观结果。但分子数量太大,虽然我们知道两个电荷之间的电磁规律,但如果你想把所有分子间作用力都搞清楚,算出它们的总和(也就是宏观的摩擦力弹力)是不现实的。

既然摩擦力能成为中学物理的另一种常见力,那就意味着它必须是一种简单的恒力

宏观理解摩擦力是很容易的,摩擦摩擦,无非就是两种物体间的一种相互作用力。一个木块在桌面上运动,它跟桌面之间就有一个摩擦阻力,在地板上运动也有一个摩擦阻力

很显然,物体表面越粗糙,摩擦力越大;物体表面越光滑,摩擦力越小。

我们可以用一个摩擦系数μ来度量两个物体之间摩擦力的强弱。而且很巧,这个摩擦系数只跟物体的材质有关,跟物体的运动速度无关,这样摩擦力就正式晋升为一种恒力。

举例,假设质量为m(重力就是mg)的物体在摩擦系数为μ的材料上水平滑动,那摩擦力f就可以表示为摩擦系数和重力的乘积,即:f=μmg。

很明显,μ、m、g都不会随着物体的运动状态而改变,所以这个摩擦力的大小是确定的。

跟摩擦力类似的还有一个空气阻力,但中学物理基本不谈它。因为它跟速度的平方成正比,这就复杂了,不忽略不行。

最后一个高中题目里常见的力就是弹力。弹力,顾名思义,是压缩或者拉伸弹簧时受到的力,它由胡克定律描述。如果弹簧的弹性系数为k,弹簧被压缩或拉伸了x的长度,那它受到的弹力F可以表示为:F=-kx

这个负号表示弹力方向与弹簧位移方向相反,你向右拉弹簧,弹力当然向左。

以上为大家介绍了万有引力、库仑力、电场力、洛伦兹力、摩擦力、弹力,基本上高中的常见力就这么些了。

17

如何出题?

把这些力亮出来干嘛呢?当然是分析在这些力的作用下物体是如何运动的。

前面分析了苹果在引力作用下的运动情况,为了让问题复杂点,我们引入了其它力。

一个苹果在重力(用万有引力定律计算)作用下获得了一个加速度(用牛顿第二定律F=ma计算),然后根据加速度分析苹果的运动情况,这是一个完美的闭环。

我们把重力换成上面的各种恒力,整个分析流程不会有任何变化。

牛顿第二定律F=ma一刀下去,把世界劈成了受力部分(用合外力F表示)和运动部分(加速度a表示)。

于是,出题思路就简单了:已知物体的受力情况,比如告诉你物体受到了重力、摩擦力、电场力啥的,让你把物体的合外力倒腾出来,利用F=ma算出物体的加速度a。再根据加速度分析物体的运动情况,比如它是速度是多少?运动了多远?

或者反过来,告诉你物体怎么动的,让你从物体的运动情况求出加速度a,再利用牛顿第二定律F=ma算出物体受到的合外力,分析物体的受力情况。

在这个闭环里,只要能给出描述这个力的公式,其它步骤一模一样。牛顿第二定律F=ma只管物体受到的合外力是什么,至于这个力是重力提供的,还是电场力、摩擦力、弹力提供的,它不在乎。

所以,这种单纯增加力的种类的做法,似乎有点“换汤不换药”,也没有增加多少复杂度。

那么,如何把题目搞得再复杂一点呢?

既然牛顿第二定律F=ma把问题分成了受力和运动两部分,中学物理又由于处理能力有限,无法引入太复杂的力(比如空气阻力),那就只能把受力部分和运动部分本身搞得再复杂一点。

18

受力部分复杂化

只有一个重力很简单,那我们再来加点其它力。

比如假设地面不光滑,那就得考虑摩擦力;加个电场,那还得考虑电场力;加个磁场,那还得考虑洛伦兹力

还可以加个斜面,让木块从一个倾斜角θ的地方滑下来,就跟滑滑梯一样。

这样的话,物体虽然还是被重力吸着往下滑。但是,因为重力的方向是竖直向下的,木块却沿着斜面滑动,两者的方向并不一样。

由于力是一个矢量,我们可以把它按照平行四边形法则分解。

比如,我们让两艘船分别向西、向南拉一艘货轮,这两个力却会让货轮往西南方向前进,仿佛西南方向有一个力在拉货轮似的。

那么,西南方向这个力就是原来两个力的合力,它也可以分解为原来正西、正南方向上的两个分力。

同样,重力是竖直向下的,我可以把它沿着斜面和垂直斜面进行分解。这样,让物体沿着斜面加速运动的仅仅是沿着斜面方向的分力。

我们把这个分力算出来,套入F=ma,就能求出沿着斜面方向上物体的加速度了。这里会涉及一些简单的三角计算,也是很简单的事。

总之,我们会用各种方式把这个物体的受力情况搞复杂,让你去分析这个物体的合力(或者某一方向的合力),再利用牛顿第二定律F=ma求出加速度(或某一方向的加速度),再分析运动情况

把受力情况搞复杂的方法,可以是添加各种其它形式的力,也可以是添加类似斜面这样的东西让它复杂化。但是,只要我们知道各种力的描述公式,知道力如何进行合成分解,这些都是很简单事情。

知道了出题人会如何把受力情况搞复杂以后,我们再来看另一半:如何把运动情况搞复杂

19

运动部分复杂化

因为不让用微积分,无法处理复杂的变加速问题,我们就来分析一个最一般匀加速运动一般的意思就是:把它搞定了,其它所有情况就都搞定了。

一个典型的匀加速运动涉及5个物理量:初速度V0、末速度Vt、加速度a、运动时间t、运动距离S

比如,一个苹果从树上静止下落,1秒后下落了5米,速度变成了10m/s。那么,这个过程中,初速度V0=0,末速度Vt=10m/s,运动时间t=1s,加速度a=g=10m/s²,运动距离S=5m。

我们关心的运动相关的物理量,就全部都在这里了。

接下来是重点:这5个运动相关的物理量,任意已知3个,我们都能求出另外的2个。因为我们有2个显而易见的恒等式,5-3=2。

第一个等式就是加速度的定义。你想想,加速度是什么?

加速度就是物体在单位时间(1秒钟)内速度的变化量。如果物体的初速度是1m/s,2秒后变成了5m/s,那它的加速度就是(5-1)/2=2m/s²,意味着它在1秒内速度会增加2m/s。

同样,如果物体的初速度是V0,经过时间t后速度变成了Vt,那物体的加速度a就可以表示为:a=(Vt-V0)/t。

整理一下,把t乘到左边,V0移过去。那初速度V0、末速度Vt、加速度a、时间t之间就有这样一个关系:Vt=V0+at(关系1)。

直观地看,加速度a是物体在单位时间内增加的速度,时间t后物体的速度就增加了at。那么,我用初速度V0加上增加的速度at,自然就得到了末速度Vt。

这本质上还是加速度的定义

再看距离S,我们是如何求物体的运动距离的呢?

因为是匀加速运动,我们可以用初速度V0和末速度Vt的平均值(V0+Vt)/2当作整个运动过程的平均速度。

比如,物体一开始速度为0,1秒后速度变成了10m/s,那它这段时间的平均速度就是(0+10)/2=5m/s。当然,这只在匀加速时成立,如果是变加速就不能这么干了(为什么不能你可以想一想)。

好,知道了平均速度和时间,距离S就可以表示为它们的乘积,即:S=(V0+Vt)×t/2(关系2)。

这样,我们就有了两个固定的关系式,一个是加速度的定义,另一个是利用平均速度求距离:

这两个式子的物理意义都很明确,容易理解。

有了这两个式子的神助攻,接下来,任意已知3个物理量,我们都可以求出剩下的物理量

在学习物理时,为了加快解题速度,背一堆公式是比较常规的操作。比如,已知V0、a、t,怎么求S啊,已知V0、Vt、a,怎么求S之类的。

但是在学习物理时,不建议在没有理解它的物理意义,没搞清楚它背后的物理图像之前死记硬背任何公式。

好,我们现在知道跟物体运动相关的物理量就那么5个,有了那2个等式以后,其它关系式都可以从这里推出来。

比如,已知物体的初速度V0、加速度a、时间t,如何求运动的距离S?这个场景非常常见,“苹果下落1秒后落了多远?”就是这种问题(V0=0,a=g=9.8,t=1)。

那要怎么做呢?

很简单,要求距离S就得利用关系2(S=(V0+Vt)×t/2),这里V0和t都有了,就差一个Vt,而Vt可以根据关系1(Vt=V0+at)得到。

所以,最终的结果就是把关系1的Vt代入关系2,这样我们就能得到了一个不含Vt的关于S的表达式。

你亲自去推一下,就会得到这样一个结果:S=V0t+at²/2。

这个式子非常常用,但是我非常不建议你直接把这个公式死记下来,然后用它去套各种题目。

因为这个式子的物理意义不是很明显,你可以把这个式子记下来,但很难看清它背后的物理图像。

如果你把过多的精力放在记忆这种物理意义不明显的公式上,虽然短时间内能够提高解题速度。但长此以往,会逐渐丧失对物理图景的把握,会觉得物理越来越无聊,就是一堆公式游戏,那就完蛋了。

物理学是描述自然的,自然就在我们眼前,我们能看到,能感觉到。所以我们用来描述自然界的物理语言,也应该是能看到,能感觉到的。

我们学习物理,要尽力看清公式背后的物理图像,如果你觉得这些公式很简单,那物理就会非常简单。

因此,整篇文章都在告诉你高中物理的框架是什么,如何看清它的物理图像。我们想告诉你,物理学的每一种想法,每一个公式的来源都是有理有据有节操,合情合理又合法的

关于物体的运动部分,我们只要知道描述物体运动的5个物理量之间有2个意义非常明确的关系式,其它公式都能从这里推出来就完了。

5个物理量,2个方程,你想推导不包含哪个物理量的方程,用消元法把它消掉就行了,不用死记它们。我们需要记住的是牛顿力学处理问题的一般方法,以及这背后的物理图像。

再回到上面的式子,不包含Vt的公式是这样的:S=V0t+at²/2。你需要这个公式时,临时推一遍就完了,耽误不了你多少时间。推导次数多了,很快就自然记住了。

你因为推导次数过多自然记住的,比死记下来的效果强太多了:第一,你永远不用担心会忘记公式;第二,作为出发点的那两个关系式的物理意义足够明显,所以你会觉得推导结论的物理意义也足够明显;第三,这个过程会锻炼你的逻辑推理能力,喜欢推公式的人,数学、物理都不会差。

如果没有理清物理框架,没有看清公式背后的物理图像,只是死死地记住了一堆结论,记住了一堆特定问题的特殊解法,那物理会学得非常痛苦。

好,再来试一个,如果把时间t消掉,初速度V0、末速度Vt、加速度a、距离S之间就会有这样一个关系式:Vt²-V0²=2aS。同样,别去死记它,别把非常有意思的物理搞成了无聊的字母游戏。

本着这种精神,你会发现出题人在物体运动状态这一边能动的手脚也非常有限,无非就是在这几个量之间变来变去。

20

场景复杂化

再回到核心的牛顿第二定律F=ma上来。

在这篇文章里,我坚持在牛顿第二定律后面加上了F=ma,如果你能看到这里来,看了这么多遍F=ma,应该形成条件反射了吧?

牛顿第二定律F=ma是整个牛顿力学的核心,它把物体的受力情况和运动情况联系在了一起,并且告诉我们物体受力之后要怎样运动。

围绕它出题,也只能一方面把物体的受力情况复杂化(添加各种各样的力,复杂化受力分析),一方面把物体的运动情况复杂化(V0、Vt、a、t、S五个量颠来倒去的变)。

如果还不够复杂,那就增加场景的数量。

比如,我让小球从光滑斜面上滚下来,这很简单。那好,我再增加一个场景:小球滚下来之后再经过一个摩擦力无法忽略的地板,在摩擦力的作用下慢慢减速。

还不够复杂?那我再增加一个磁场(电场),让小球滚进磁场(电场)里运动;加一个弹簧,让小球被反弹运动;加一个传送带……

于是,许多小场景就拼成了一个大场景,问题也就更加复杂了。这就像《猫和老鼠》里经常出现的一个机关触发另一个机关的场景,不停的运动。

架势看起来很吓人,但只要把每一个过程都分析清楚了,串起来的总过程也不会很难。

好,到这里,关于牛顿第二定律F=ma,关于力如何让物体运动的分析,就先告一段落。

从这种观点看世界,力处在最核心的地位。理论上来说,只要我们知道物体此刻的状态,知道它受到的力,我们就能根据F=ma算出物体后面任意时刻的状态(速度、位移都不在话下)

牛顿也是根据这个,将“上帝”逐出了太阳系。决定物体如何运动的,不是所谓的“上帝”的意志,而是它受到的力。

因此,这种以“”为核心观念的理论被称为牛顿力学也是非常贴切的。

接下来,我们换一种眼光看世界。

21

另一种角度

牛顿力学的观点来看,只要我们知道了物体的初始状态受力情况,就知道了物体的一切。但是,理想很丰满,现实却很骨感,很多问题理论上可以计算,实际操作起来却复杂无比。

你想啊,牛顿力学的核心思想是物体下一刻的状态由上一刻的状态以及受力情况决定。这样,我们分析下一个状态,就要依赖上一个状态,而上一个状态又依赖于上上一个状态。

这就像多米诺骨牌,我们必须对物体运动过程中的每个状态都了如指掌才能给出最终的答案。

但是,很多时候我们并不关心物体运动的中间过程是什么样,我们只关心最后的结果。

又或者,我们根本没有能力(受限于观测水平、计算能力等)把中间过程完全搞清楚,但我们很希望知道最后的结果是啥样的。

比如,你经营一家超市时,很可能不是很关心每个月都有谁买了什么具体的东西。但是,你肯定关心这个月总共卖了多少钱,进货花了多少钱,房租人力成本又花了多少钱。

因为你知道,对于你来说:钱既不会凭空产生,也不会凭空消失(你没有能力印钱,也不会发疯去撕钱),它只会从一个地方流入到另一个地方(从买家手里流入你的手里,从你的手里流入上游供货商手里),但是总量保持不变。

好,现在我们发现了一条关于金钱流通的定律,我们姑且称之为“金钱守恒定律”。

有了金钱守恒定律,我们就不用知道每天每笔账的具体细节,只要知道了总收入和总支出,就能知道这个月赚了多少钱。

同理,大自然在不停地变化,物理世界也在不停地运动。那么,在这种运动和变化之中,有没有什么东西就像钱一样,也是变来变去但总量不变的呢?

比如,一个运动小球撞击一个静止的小球,撞击前只有一个小球在运动,撞击后两个小球都在运动,但是原来小球的速度却变慢了

想想这个过程,似乎是原来的小球拥有一部分“运动”,撞击之后它把一部分的“运动”分给了另一个小球,然后自己拥有的“运动”就变少了。再多撞几次,它的“运动”就越来越少,于是它就慢慢减速,直到最后停了下来。

发现没有,小球失去“运动”的过程,跟我们失去金钱的过程非常类似。

我手上有一笔钱,给这个分一点那个分一点,然后我的钱就越来越少,最后没钱了。小球有一笔“运动”,它给这个分一点,那个分一点,最后“运动”分完了它就不动了。

金钱和“运动”如此类似,既然有“金钱守恒定律”,那会不会也有什么跟运动相关的守恒定律呢?

提到守恒就要比大小,几个量加起来等于另外几个量才叫守恒。

那问题的关键就是:金钱我知道如何衡量它的大小(直接用人民币的面额就行),那运动我用什么去衡量它的大小呢?

22

运动的能力

一个小球以一定的速度运动,那它具有的“运动的能力”是多大呢?分给另外的小球之后,它们拿走了多少,我自己又还剩下多少?很显然,这些账必须算清楚,否则没法玩。

也就是说,我们现在需要找到一个量来描述小球运动能力的大小。这个量应该长什么样,我们不妨先来猜一猜。

很显然,最容易想到的就是速度。一个小球的速度越大,运动得越快,它显然就应该具有更多“运动的能力”。

但问题是,这种运动的能力跟小球的速度到底是什么关系?如果小球的速度变成了原来的2倍,那它“运动的能力”到底是变成了原来的2倍,还是4倍、8倍或者其它数字?

这种问题光靠脑袋是想不出来的,物理学是基于实验的科学,我们可以通过实验来寻找这种关系。

比如,我们可以让小球以一定的速度撞击其它的小球,再把小球的速度提高到原来的2倍、3倍,让它再去撞击同样的小球,看看它“运动的能力”到底提高了多少倍。

最后,实验结果告诉我们:物体具有的“运动的能力”,跟它的速度的平方成正比

也就是说,如果速度变成了2倍,它具有的”运动的能力“就变成了原来的4倍;速度变成了3倍,后者就变成原来的9倍。

除了速度,物体具有的“运动的能力”显然还跟质量有关。同样的速度,一辆大卡车显然比一辆自行车具有更多“运动的能力”,前者明显能撞飞更多的东西。

同样的问题:它跟质量是什么关系?一个物体的质量变成了原来的2倍,它具有的“运动的能力”会变成原来的几倍呢?

同样的回答:去做实验,实验结果说什么,我们就听什么。最后,实验说物体具有的”运动的能力“跟质量成正比

也就是说,质量变成2倍,”运动的能力“也变成2倍。

这也是很好理解的。因为质量变成了2倍,我就可以把它分成两个质量相等的小物体,这样每个小物体具有的“运动的能力”就应该和原来的一样,所以必然是2倍。

其它的因素好像暂时就无关紧要了。

这样,我们基本上就找出了物体“运动的能力”的定量关系式:它跟物体的质量成正比,跟物体的速度的平方成正比。最后,考虑到单位和数值,我们再加了一个1/2作为系数

于是,这个定量描述物体具有”运动的能力“的物理量,就有了一个新名字:动能

这个能,是能量(Energy)的意思,所以用字母E表示,动能就表示因为物体运动而具有的能量

动能的大小就等于物体的质量m乘以速度的平方v²,再除以2,即:E=mv²/2。

有了动能的具体表达式,我们就可以对物体具有的”运动的能力“进行定量计算,算清楚后就可以和钱一样进行交易、分配了。

23

能量守恒定律

动能,是物体因为运动而具有的能量,是能量的一种。

我们可以把这个能量分一点给其他的物体,中间环节我不管。你可以跟A物体关系好就给它多分一点,跟B物体关系不咋地就给它少分一点,但是能量的总和是一定的,能量的总量是守恒的

这样,仿照“金钱守恒定律”,我们就有一条能量守恒定律:能量既不会凭空产生,也不会凭空消失,它只会从一种形式转化为另一种形式,或者从一个物体转移到其它物体,而能量的总量保持不变

能量守恒定律是一条非常伟大的定律,它让我们有了另一种视角来看待物理世界,而且还很容易理解。

之前我们用牛顿第二定律F=ma分析物体运动,它的核心概念是“力”。物体的运动状态之所以会改变,是因为有力作用在它身上。我们对物体进行受力分析找出合外力,然后根据F=ma求出物体的加速度,从而算出物体下一刻的运动状态。

比如,一个运动的小球去撞击静止的小球,为什么静止的小球会动呢?

从力的观点来看,是因为运动小球跟它接触时,给它施加了一个力的作用。这个力让静止小球有了一个加速度,从而改变了它的运动状态。

你想算出静止小球后面怎么运动,就要算出它受力的大小。但是,这明显不太好算(就撞一下,我哪知道它到底有多大力啊,测也不好测)。

现在,我们有了能量的观点,就能从能量转化的角度来看这个过程。

为什么静止的小球会动起来呢?因为运动的小球把一部分动能给它了,于是静止小球就具有了一部分动能,就动了。

那么,静止小球获得了多少动能呢?答:原来运动的小球损失了多少动能,静止的小球就获得了多少动能,因为动能的总量是守恒的(这里假设都是刚性小球,碰撞过程没有能量损失)。

这样,我们就不用再关注碰撞过程中到底发生了什么,也不用去计算碰撞过程中每个时刻的受力大小,直接根据前后能量守恒就行了,这太棒了。

有了能量守恒这样一种新思路,科学家们高兴坏了。

这样,很多中间过程很复杂,但我们并不关心中间过程,只关心结果的问题就很好解决了。比如刚刚说的碰撞问题,用牛顿第二定律F=ma实在不好弄,但是用能量守恒就轻轻松松。

守恒律是物理学里非常重要的东西,为什么有些东西(比如能量)是守恒的呢?背后更深层的原因就是对称性

比如,为什么能量守恒?因为我们的世界具有时间平移不变性

简单的说就是今天有效的物理定律,明天也有效。把物理定律在时间上从今天平移到明天,它不发生改变(F=ma今天是这样,明天还是这样),这就是时间平移不变性

你可能觉得这是废话,如果一条物理定律今天长这样,明天长那样,那我还要定律有何用?

但是,正是因为有时间平移不变性,我们才有能量守恒。这个世界最难理解的事情,就是这个世界居然是可以理解的。

好,发现了能量守恒这么好的东西,物理学家当然立马就被圈粉了,于是能量守恒就成了“物理正确”。

24

能量的扩张

前面说了,刚性小球在碰撞时动能是守恒的,大家撞来撞去,动能就在它们之间不断流动。

但是,你观察苹果下落的过程:一个苹果一开始是静止的,这时动能为0。但是,它下落时速度在不断增加,所以动能也会不停地增大。

也就是说,苹果一开始动能为0,后来慢慢增大了。

不是说动能守恒的么?这里没看到其它物体动能减小,那苹果增加的动能是从哪里来的?为什么刚性小球碰撞时动能守恒,苹果下落时动能好像就不守恒了?问题出在哪?

我们想想,苹果之所以会加速下落,是因为地球对苹果有一个吸引力。这个引力让苹果加速,获得了动能。除了引力,还因为苹果距离地面有一定的高度,具有往下落的能力,所以才会加速下落,动能增加。

所以,面对苹果下落,动能不守恒这个问题,物理学家想到的办法是:苹果因为距离地面很高,而且受到重力,因此具有往下落的能力。这也是一种能量,我们把它定义为重力势能。

苹果在树上具有一定的重力势能,下落过程中,它的重力势能不断减小,动能不断地增加。虽然苹果的动能不守恒,但是动能和重力势能的总能量依然保持守恒。

这样,物理学家们深爱的能量守恒定律就依然成立。

同理,我们继续观察:一个木块在粗糙的地面上滑动,最后慢慢停了下来。那么,这个过程中木块的动能去哪了呢?好像也没有转化成重力势能或者其它物体的动能啊。

木块在粗糙地面上滑动时,受到摩擦力的阻碍而减速,这个过程加热了地面(摩擦生热)。

从微观来看,温度升高了,其实就是分子的运动程度变剧烈了,是分子的平均动能增加了。于是,我们又新定义了一种能量:内能

因此,木块在滑动时,动能转化成了内能(或者说大量分子的动能),总能量保持不变,能量守恒定律依然成立。

同样,一个带电小球在电场中会被加速,动能增加。那这个动能从哪里来的呢?好,于是电场就理所当然地具有了能量,小球和电场的总能量守恒,能量守恒定律依然成立。

从某种意义上来说,能量守恒定律似乎永远不会错。因为你只要发现某个过程中能量不守恒,我就可以定义一种新品种的能量(就像重力势能、内能、电场能),从而让能量守恒继续成立。

25

力与能量

能量是我们看待物理世界的两个不同视角。

面对同一个物理现象,你既可以对它受力分析,通过牛顿第二定律F=ma来求解;也可以找到系统的能量转换关系,利用能量守恒来求解。

那么,力和能量是怎么关联起来的呢?

看一个简单的例子:我用一个恒力F(大小和方向都不变)去推一个质量为m的静止物体,然后物体均匀地加速到速度v。

从力的角度看,物体受到的合外力就是F,它在这个力的作用下产生了一个加速度a,然后物体以这个加速度从静止加速到速度v。

不知道大家还记不记得前面关于运动部分的分析。5个运动相关的物理量V0、Vt、a、t、S,我们只要知道3个,就能求出另外2个,因为有两个恒等式:

在这个例子里,我们已经知道了3个物理量:初速度V0为0,末速度Vt为v,加速度为a。

利用上面两个关系式消去时间t,我们就能得到其它四个量的关系:Vt²-V0²=2aS。在这个例子里,V0=0,Vt=v,代入进去就是v²=2aS,于是距离S就可以写成:S=v²/2a。

把距离S求出来干嘛呢?我们不妨来算一算力F和距离S的乘积F·S,也就是算一算力F在空间上的累积。

为什么要算这个量呢?待会儿你就知道了。

因为S=v²/2a,力F可以根据牛顿第二定律F=ma来算,那么力F和距离S的乘积F·S可以表示为:

看到没有,这两个量相乘,刚好把加速度a约去了,剩下的结果竟然就是mv²/2。

有没有很眼熟?这不就是刚刚说的物体的动能么?

也就是说,我们用力F乘以这个力作用的距离S,得到的结果竟然跟物体后来的动能一模一样

这是一种巧合,还是有什么更深层的含意?

好,上面我们从“力”的角度分析了这个过程,下面再从“能量”角度来看看。

从能量角度来说,物体一开始是静止的,动能为0,后来具有速度v,动能为mv²/2。

也就是说,物体凭空多出了mv²/2的动能。那么,这个能量是从哪里来的呢?

从直觉来看,物体会动,是因为有一个力F在推它。那么,这个力又是从哪里来的呢?

如果是一个人在推物体,那么,为了使出这个力,这个人肯定需要消耗一定的能量。其中一部分能量就给了物体,成了它的动能。

如果是地球在吸引物体,那这个F就是重力,结果就成了重力势能转化成了物体的动能。

如果是一个电场在推物体,这个力F就是电场力,这个过程就是电场能转化成了物体的动能

当然,题目并没有说这个力F是从哪里来的,我们也就无法知道到底是什么能量转化成了物体的动能。

但是没关系,不管这个力是什么力,也不管这个能量到底是从哪转化来的,我们只要知道用这个力F乘以距离S就能等效地算出这个动能的大小就完了。

力作用在一个物体上,并且使物体在力的方向上移动了一段距离,这个过程在物理上叫做功。它是能量从一种形式转化为另一种形式的过程,正如上面人的能量、重力势能、电场能转化成物体动能那样。

虽然这个概念很重要,但是我现在并不想过多地讲这个。你脑袋里只要有清晰的能量守恒、能量流动、能量转化的图景就完了。

有了“力乘以距离就能等效地算出这个动能的大小”的概念后,你会发现很多能量的公式根本不用记,自然而然就能写出来。

26

不用死记的能量

比如,一个质量为m的苹果,在高度为h的树上,它具有的重力势能是多少?

苹果从树上静止下落,从能量角度来看,就是苹果具有的重力势能转化成了它的动能。而我刚刚说了,力F乘以距离S就能等效地算出这个动能的大小,那自然也就算出了重力势能的大小。

在地面附近,苹果的重力为mg,它从苹果树下落到地面要走的距离为h。那么,用重力乘以距离得到的mgh,自然就是苹果具有的重力势能。

同样,在一个匀强电场E里,电荷q受到的电场力为qE。那么,在高度为d的地方具有的电场能就应该是qEd。不过,出题人一般会告诉你电势差U=Ed,这样电场能就可以直接写成qU。

弹性势能稍微麻烦一点,因为弹簧被压缩时,弹力的大小F是一直在改变的F=-kx(k为弹性系数,x为压缩距离),并不像重力mg、电场力qE那样一直是恒定的。

因此,我们就不能直接用一个固定大小的力乘以距离来表示弹性势能。而应该把弹簧分成很多片,在每一小片里近似认为弹力不变,求出这一小段的弹性势能,再把所有的加起来。

这又是微积分的思想,利用弹力公式F=-kx来计算弹性势能的大小(提示,最终弹性势能的表达式为kx²/2)。

知道怎么表示重力势能以后,我们再来看看苹果下落这件事。

假设苹果的质量为m,苹果树的高度为h。在树上,苹果的动能为0,重力势能为mgh;苹果落地时,重力势能为0(因为高度h=0),动能达到最大的mv²/2。

因为能量是守恒的,所以在树上的总能量(0+mgh)就应该等于落地时的总能量(mv²/2+0),即:

把质量约掉,g又是一个常数,这个式子就变成了高度h和落地速度v的一个关系式。很显然,已知其中一个,立马就能算出另外一个。

当然,如果知道了树的高度h,就等于知道了运动距离S,加速度又是已知的g,初速度等于0。所以,我们就已经知道3个运动相关的量了,从运动学关系出发,一样可以算出下落时间t和落地速度v。

这是两种不同的视角,两种方法也都不难。

27

能量视角的优势

再看一个有区分度的:

一个物体从一个弯曲的光滑斜面往下滑,注意斜面不是平的。因为弯曲,所以物体在不同时刻沿着斜面方向的分力是不一样的,因此物体的加速度也在不停地改变。

就像我们滑滑梯时,都是一开始坡度大一些,加速度大一些,后面平缓一些,加速度小一些。

这样你再想从力的角度对它进行运动学分析就困难了吧?因为物体的加速度一直在变,这是一个变加速运动

更麻烦的是,题目压根就没告诉我这个曲面是怎么弯曲的,这样就求不出中间时刻的加速度,那速度自然也没法求了。

但是,从能量角度来看,这个问题跟苹果下落的问题没有任何区别:都是静止物体从某一高度下落,重力势能完全转化为动能的过程。

所以,从能量守恒的角度,我根本就不需要知道这个斜面是怎么弯曲的,不需要知道中间过程都是啥样。

我们只要知道,最后到达地面时,它全部的重力势能mgh都转化成了动能mv²/2就完了:

你看,整个方程都跟苹果下落一模一样,非常简单。

这样,大家对能量视角有什么新体会么?

28

物理学的图像

仔细想一想,似乎这篇文章从头到尾都在教你不要死记物理公式,不要硬背物理定律,要看清物理学的图像。

物理学是一门研究物质基本运动和规律的学问,牛顿力学又是极其成熟的一套体系。既然非常成熟,那它自然就有一套非常完善地处理各种问题的一般方法。因为自成体系,所以它也有着清晰的框架结构和逻辑基础。

牛顿力学和原来物理学的一个最大区别就是:牛顿力学认为力不是维持物体运动的原因,而是改变物体运动速度的原因。这种思想在牛顿第二定律F=ma这里得到了完美的体现,所以牛顿第二定律这么重要。

F=ma不就是在告诉我们力F是如何改变物体的运动速度(加速度a)的么?然后,你是什么力(引力、摩擦力、弹力、电场力),找到描述这种力的公式就完了;它要怎么运动,无非就是V0、Vt、a、t、S这五个运动物理量之间的字母游戏。

能量能量守恒则提供了另一种看待问题的视角。

这里不需要力,我们只要抓住各种能量之间是如何转化的,就像抓住经济活动中金钱是如何流动的一样。只要把逻辑理清楚了,许多能量的表达式都是非常自然的。

”这个概念在高中随处可见,但基本上也就局限在牛顿力学里了,它是牛顿力学这个特定背景下的产物。当你以后学习近代物理时,你会发现力的概念越来越少,现代物理里甚至通篇没有“力”这个东西

但是,能量的概念在牛顿力学、相对论、量子力学、量子场论里一直都有,它是超越牛顿力学,在所有物理学里都非常重要的存在。

如果觉得本文有用,请分享给更多的人,这样就不会错过每天的推送了!

待续

(0)

相关推荐

  • 经典力学告诉你,爱情多么残酷!

    作者:刘翼豪(中科院物理所) 经典力学是物理学的基础组成部分.它们描述了万物是如何运动的,并且研究了物体运动的原因.我们下面尝试使用经典力学对爱情进行描述. 牛顿运动定律 牛顿运动三定律是动力学的基本 ...

  • 如何学好高中物理(下)?这是我见过最硬核的答案

    高中物理 2021-02-03 好,回到牛顿力学,我们再来聊最后一个话题. 29 从牛顿第三定律出发 牛顿力学有三大运动定律,它们是这个体系里最基本的东西.第一定律(惯性定律)和第二定律(F=ma)我 ...

  • 硬核解读:如何学好高中物理?

    很多同学初中时很喜欢物理,觉得物理很简单也很有意思.但一到高中就感觉跟不上了,感觉跟自己以前认识的物理不是一个东西,不再那么直观,也不再那么简单有趣. 于是,在一些可以自由选择高考科目的地方,大量考生 ...

  • 如何学好高中物理?5张表格带你吃透三年教材,就是这么6

    为什么你的高中物理成绩一直很低?今天就让我们来找一找原因.书上的基础概念和定理背下来了吗?公式和二级结论会写吗?课后会整理笔记吗?做完题之后会反思吗? 这些都是我们班上物理成绩好的同学,一直在坚持的习 ...

  • 如何学好高中物理?这四个方面是提分的关键

    (1)基础概念.定理定律和物理公式要掌握牢. 高中物理题的解题过程,都是基于教材中最基本的概念.定理定律和物理公式的,包括最难的高考物理压轴题无一例外. 我们可以试想一下,在一道功率和动能定理的综合考 ...

  • 2021高中物理中的微元法的解析技巧(附详细试题解析)转给孩子

    对于大部分学弟学妹来说,物理是一个很难跨越过去的坎,与初中物理相比,高考物理的分数值占比也比中考得要高了不少,而且高中物理的知识量大,由定性分析转向了定量计算:高中物理无论是难度上,还是思维量上都远远 ...

  • No.58 做好以下6点,90%的学生都能学好高中物理!(原创干货)

    对于很多同学来说,高中数学和高中物理是让人很头疼的学科.除了个人智力差异造成的学习成绩差异之外,个人认为学习习惯的养成至关重要,甚至可以说是起到决定性作用.下面结合我自己和部分同学的经历,总结了以下6 ...

  • 学好高中物理的六大层次

    在高中理科各科目中,物理科是相对较难学习的一科,学过高中物理的大部分同学,特别是物理成绩中差等的同学,总有这样的疑问:"上课听得懂,听得清,就是在课下做题时不会."这是个普遍的问题 ...

  • 专家指导:如何才能学好高中物理

    在高中理科各科目中,物理是相对较难学习的一科,学过高中物理的大部分同学,特别是物理成绩中差等的同学,总有这样的疑问:"上课听得懂,听得清,就是在课下做题时不会."这是个普遍的问题, ...

  • 可打印学习!高中物理中的微元法解析技巧(详细解析)转给孩子

    高中物理的知识量大,由定性分析转向了定量计算:高中物理无论是难度上,还是思维量上都远远大于初中物理,对于逻辑思维的严谨性也是一种很大的考验!其实战胜物理也没有那么难! 因为篇幅有限,点击我的头像私信我 ...