MAT之SA:利用SA算法解决TSP(数据是14个虚拟城市的横纵坐标)问题
MAT之SA:利用SA算法解决TSP(数据是14个虚拟城市的横纵坐标)问题
输出结果
实现代码
%SA:利用SA算法解决TSP(数据是14个虚拟城市的横纵坐标)问题——Jason niu
X = [16.4700 96.1000
16.4700 94.4400
20.0900 92.5400
22.3900 93.3700
25.2300 97.2400
22.0000 96.0500
20.4700 97.0200
17.2000 96.2900
16.3000 97.3800
14.0500 98.1200
16.5300 97.3800
21.5200 95.5900
19.4100 97.1300
20.0900 92.5500];
D = Distance(X);
N = size(D,1);
T0 = 1e10;
Tend = 1e-30;
L = 2;
q = 0.9;
Time = ceil(double(solve([num2str(T0) '*(0.9)^x = ',num2str(Tend)])));
count = 0;
Obj = zeros(Time,1);
track = zeros(Time,N);
S1 = randperm(N);
DrawPath(S1,X)
title('利用自定义函数绘制TSP问题的初始路径(随机产生)—Jason niu')
disp('初始种群中的一个随机值:')
OutputPath(S1);
Rlength = PathLength(D,S1);
disp(['总距离:',num2str(Rlength)]);
while T0 > Tend
count = count + 1;
temp = zeros(L,N+1);
S2 = NewAnswer(S1);
[S1,R] = Metropolis(S1,S2,D,T0);
if count == 1 || R < Obj(count-1)
Obj(count) = R;
else
Obj(count) = Obj(count-1);
end
track(count,:) = S1;
T0 = q * T0;
end
figure
plot(1:count,Obj)
xlabel('迭代次数')
ylabel('距离')
title('SA:显示SA算法对TSP问题的优化过程(适应度函数)—Jason niu')
DrawPath(track(end,:),X)
title('SA:利用SA对TSP问题优化,绘制出利用SA算法优化后的最优路径图—Jason niu')
%% IX. 输出最优解的路线和总距离
disp('最优解:')
S = track(end,:);
p = OutputPath(S);
disp(['总距离:',num2str(PathLength(D,S))]);
相关文章
MAT之SA:利用SA算法解决TSP(数据是14个虚拟城市的横纵坐标)问题
赞 (0)