中考数学点拨复习《数学思想方法问题》
数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路。因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常见的解题方法与技巧,从而为夺得中考高分搭起灵感和智慧的平台。
初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等。结合中考走向,我们重点就以下几种思想方法进行赏析强化。
【例题2】小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.
(1)求树DE的高度;
(2)求食堂MN的高度.
【例题3】某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.
(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?
(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.
【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用..
【分析】(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;
(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.
【解答】解:(1)设购买A种花木x棵,B种花木y棵,
【能力检测】
1. 小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高水位
与注水时间之间的变化情况的是( )
2. 在一个不透明的袋子中有一个黑球a和两个白球b,c(除颜色外其他均相同).用树状图(或列表法)解答下列问题:
(1)小丽第一次从袋子中摸出一个球不放回,第二次又从袋子中摸出一个球.则小丽两次都摸到白球的概率是多少?
(2)小强第一次从袋子中摸出一个球,摸到黑球不放回,摸到白球放回;第二次又从袋子中摸出一个球,则小强两次都摸到白球的概率是多少?
【考点】X6:列表法与树状图法..
【分析】(1)列举出所有情况,看小丽两次都摸到白球的情况数占总情况数的多少即可;
(2)列举出所有情况,看小强第二次摸到白球的情况数占总情况数的多少即可.
3. 在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0),现以原点为位似中心,将线段CD放大得到线段AB.若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为 (4,6)或(﹣4,﹣6) .
【考点】SC:位似变换;D5:坐标与图形性质.
【分析】根据位似变换的定义,画出图形即可解决问题,注意有两解.
【解答】解:如图,
4. 我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是 25 尺.