经典动态规划:0-1 背包问题

前言

经过前面三篇动态规划文章的介绍,相信大家对动态规划、分治、贪心有了充分的理解,对动态规划的 3 个核心问题、其本质也有了了解。

纸上得来终觉浅,绝知此事要躬行。

那么今天开始我们来聊聊具体的那些面试时常考的题目。

问题背景

月黑风高的夜晚,张三开启了法外狂徒模式:他背着一个可装载重量为 W 的背包去地主家偷东西。

地主家有 N 个物品,每个物品有重量和价值两个属性,其中第 i 个物品的重量为 wt[i],价值为 val[i]

问张三现在用这个背包装物品,最多能装的价值是多少?

举例:

N = 3 //地主家有三样东西

wt = [2,1,3] //每样东西的重量

val = [4,2,3] //每样东西的价值

W = 4 //背包可装载重量

算法应该返回 6.

因为选择第一件物品和第二件物品,在重量没有超出背包容量下,所选价值最大。

如果每种物品只能选 0 个或 1 个(即要么将此物品装进包里要么不装),则此问题称为 0-1 背包问题;如果不限每种物品的数量,则称为无界(或完全)背包问题。

今天这篇文章我们只关注 0-1 背包问题,下一篇文章再聊完全背包问题。

那我们是如何选择要装入的物品的?

思路初探

首先,质量很大价值很小的物品我们先不考虑(放着地主家金银财宝珍珠首饰不偷,背出来一包煤...,那也就基本告别盗窃行业了...)

然后呢?再考虑质量大价值也大的?还是质量较小价值也稍小的?

我们自然而然想到:装价值/质量 比值最大的,因为这至少能说明,此物品的“价质比”最大(也即贪心算法,每次选择当前最优)

那么这样装能保证最后装入背包里的价值最优吗?

我们先来看一个例子:

假设有 5 个物品,N = 5,每种物品的质量与价值如下:

W : 20, 30, 40, 50, 60

V : 20, 30, 44, 55, 60

V/W: 1, 1, 1.1, 1.1, 1

背包容量为 100

如果按上述策略:优先选“价质比”最大的:即第三个和第四个物品

此时质量:40+50=90

价值:44+55 =99

但我们知道,此题更优的选择策略是:选第一个,第二个和第四个

此时质量:20+30+50=100

价值:20+30+55=105

所以,我们的“价质比”这种贪心策略显然不是最优策略。

读过一文学懂动态规划这篇文章的读者会发现,之前文章中兑换零钱例子我们最开始也是采取贪心策略,但最后发现贪心不是最优解,由此我们引出了动态规划

没错,今天这题也正是动态规划又一经典的应用。

解题思路

根据动之前的文章我们知道,动态规划的核心即:状态状态转移方程

那么此题的状态是什么呢?

状态

何为状态?

说白了,状态就是已知条件

重读题意我们发现:此题的已知条件只有两个:

  • 背包容量
  • 可选的物品

题目要求的是在满足背包容量前提下,可装入的最大价值。

那么我们可以根据上述状态定义出 dp 数组,即:

dp[i][w] 表示:对于前i个物品,当前背包的容量为w,这种情况下可以装的最大价值是dp[i][w]

我们自然而然的考虑到如下特殊情况:

i = 0w = 0,那么:

dp[0][...] = dp[...][0] = 0

解释:
对前 0 个物品而言,无论背包容量等于多少,装入的价值为 0;

当背包容量为 0 时,无论装入前多少个物品(因为一个都装不进去),背包里的价值依旧为 0。

根据这个定义,我们求的最终答案就是dp[N][W]

我们现在找出了状态,并找到了 base case,那么状态之间该如何转移呢(状态转移方程)?

状态转移方程

dp[i][w] 表示:对于前i个物品,当前背包的容量为w,这种情况下可以装的最大价值是dp[i][w]

思考:对于当前第 i 个物品:

  • 如果没有把第 i 个物品装入包里(第 i 个物品质量大于当前背包容量):那么很显然,最大价值dp[i][w]应该等于dp[i - 1][w],没有装进去嘛,故当前背包总价值就等于之前的结果,即第i - 1 个物品之前的总价值 。

  • 如果把第 i 个物品装入了包里,那么 dp[i][w]应该等于什么呢?

它应该等于下面两者里的较大值:

  1. dp[i - 1][w] //前i - 1个物品,背包所装的最大价值

  2. dp[i - 1]w - wt[i]] + val [i] //当前第 i 个物品我装里边了,那么此时背包装入的总价值即为:当前第 i 个物品的价值 val [i] + 第 i 个物品之前,背包容量为w - wt[i](w 减去当前第 i 个物品的质量)dp[i - 1]w - wt[i]] 时的价值

上述两个如果可以写成以下代码:

//如果第i个物品质量大于当前背包容量
if (wt[i] > W) {
 dp[i][W] = dp[i-1][W];  //继承上一个结果
} else {
//在“上一个结果价值”和“把当前第i个物品装入背包里所得到价值”二者里选价值较大的
 dp[i][W] = Math.max(dp[i-1][W],dp[i-1][W-wt[i]] + val[i])
}

例子

我们接来下再用一个具体的例子,来理解状态和状态转移方程

现在我们有 4 个物品,物品对应的价值与质量分别如上图左侧所示:

6, 4

2,5

1, 4

8, 1

Step 1

我们首先初始化一行和一列 0,分别对应dp[0][w]dp[i][0]

那么第一个问号处应该填什么呢?

我们根据上述表述的状态转移关系来判断:

当前第一个物品的重量 4 > 背包容量,故装不进去,所以继承上一个结果。

上一个结果是什么呢?

就是第 i - 1个物品,也就是第 0 个,和W = 1时的价值:

if (wt[i] > W) { dp[i][W] = dp[i-1][W];  //继承上一个结果}

此时方框里的值为 0,故第一个问号这里应该填 0

Step 2

现在我们走到了当背包容量 W = 2 的时候,此时当前 i (依旧第一个物品)能否装进背包里呢?

我们发现 4 > 2,此时还是装不进去,那么同样继承上一个结果。

上一个结果是 i 不变(依旧是第 **0 **个物品),W = 2,所以结果依旧为 0

Step 3

现在来到 W = 3,发现依旧装不进去,所以填 0。

Step 4

下一步到 W = 4 这里了,

此时物品重量 4 = 4(背包容量),可以装里,那么按照之前状态转移关系应该是:

else {
//在“上一个结果价值”和“把当前第i个物品装入背包里所得到价值”二者里选价值较大的
 dp[i][W] = Math.max(dp[i-1][W],dp[i-1][W-wt[i]] + val[i])
}

Option A:

  • 上一个结果 : dp[i - 1][w],即dp[0][4] = 0

Option B:

  • 把当前第 i 个物品装入背包里所得到价值dp[i - 1]W - wt[i]] + val [i]

此时第一个物品的重量为 4,背包容量为 4,

故要想装入重量为 4 的此物品,那么背包先前的容量必须为当前背包容量 - 当前物品容量:4 - 4 = 0

我们随即找到在没装入此物品(重量为 4,价值为 6)之前的dp[i -1]W - wt[i]] = dp[0][0] = 0

那么dp[i -1]W - wt[i]] + val [i] = 0 + 6 = 6

6 和 0 选择一个最大值,所以这里问号处应填入6

Step 5

下一步我们来到 W = 5 这里,此时依旧是第一个物品,质量 4 < 5(背包容量),我们可以装里边。

然后我们在

Option A:

  • 上一个结果dp[0][5] = 0

Option B:

  • 把当前第 i 个物品装入背包里所得到价值dp[i -1]W - wt[i]] + val [i]

此时第一个物品的重量为 4,背包容量为 5

故要想装入重量为 4 的此物品,那么背包先前的容量必须为:当前背包容量 - 当前物品容量:5 - 4 = 1

我们随即找到在没装入此物品(重量为 4,价值为 6)之前的dp[i - 1]W - wt[i]] = dp[0][1] = 0

那么dp[i -1]W - wt[i]] + val [i] = 0 + 6 = 6

选择一个最大值,即 6,所以此处应该填入 6

我们根据以上状态转系关系,依次可以填出空格其它值,最后我们得到整个 dp 数组:

V W 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0 0
6 4 0 0 0 0 6 6 6
2 5 0 0 0 0 6 6 6
1 4 0 0 0 0 6 6 6
8 1 0 8 8 8 8 14 14

最后的 dp[4][6]:考虑前四个物品,背包容量为 6 的情况下,可装入的最大价值,即为所求。

(注意:我们在这里求的是 0-1 背包问题,即某一个物品只能选择 0 个或 1 个,不能多选!)

代码

根据以上思路,我们很容易写出代码:

两层 for 循环

  1. 外层循环 i 遍历物品(即前几个物品):
for(int i = 1;i <=N;i++){  ...}
  1. 内层循环 j 遍历 1~W(背包容量)之间的整数值:

然后写入状态转移方程

for(int j = 0;j <= W;j++){
  //外层循环i,如果第i个物品质量大于当前背包容量
    if (wt[i] > W) {
        dp[i][W] = dp[i-1][W];  //继承上一个结果
    } else {
        //在“上一个结果价值”和“把当前第i个物品装入背包里所得到价值”二者里选价值较大的
        dp[i][W] = Math.max(dp[i-1][W],dp[i-1][W-wt[i]] + val[i])
    }
}

由此我们给出完整代码:

class solution{  public int knapsackProblem(int[] wt,int[] val,int size){    //定义dp数组    int[][] dp = new int[wt.length][size];    //对于装入前0个物品而言,dp数组储存的总价值初始化为0    for(int i = 0;i < size;i++){     int[0][i] = 0;    }    //对于背包容量W=0时,装入背包的总价值初始化为0    for(int j = 0;j < size;j++){     int[j][0] = 0;    }    //外层循环遍历物品    for(int i = 1;i <= N;i++){     //内层循环遍历1~W(背包容量)     for(int j = 0;j <= W;j++){      //外层循环i,如果第i个物品质量大于当前背包容量         if (wt[i] > W) {             dp[i][W] = dp[i-1][W];  //继承上一个结果         } else {             //在“上一个结果价值”和“把当前第i个物品装入背包里所得到价值”二者里选价值较大的             dp[i][W] = Math.max(dp[i-1][W],dp[i-1][W-wt[i]] + val[i])         }     }    }  }}

只要我们定义好了状态(dp 数组的定义),理清了状态之间是如何转移的,最后的代码水到渠成。

本文所说的这个 0-1 背包问题,Leetcode 上并没有这个原题,所以对于背包问题,最重要的是它的变种

背包问题是一大类问题的统称,很大一部分动态规划的题深层剖析都可以转换为背包问题。

所以还需要理解体会背包问题的核心思想,再将此种思想运用到其它一类背包问题的问题上。

那么背包问题还有哪些变化呢?我们下期见~

(0)

相关推荐

  • 图解 | 你管这破玩意叫动态规划

    低并发编程,周一很颓废,周四很硬核 1 小宇:闪客,我最近在研究动态规划,但感觉就是想不明白,你能不能给我讲讲呀? 闪客:没问题,这个我擅长,你先说说提到动态规划,你最先想到的是什么? 小宇:就什么子 ...

  • 动态规划答疑篇

    ----------- 这篇文章就给你讲明白两个问题: 1.到底什么才叫「最优子结构」,和动态规划什么关系. 2.为什么动态规划遍历 dp 数组的方式五花八门,有的正着遍历,有的倒着遍历,有的斜着遍历 ...

  • (1条消息) 动态规划就此一篇 全网最详细, 逐步理解, 万字总结

    文章目录 动态规划 - 超详细系列 首先,先大致列下这篇文章会讲到什么 1.相较于暴力解法,动态规划带给我们的是什么?为什么会有重叠子问题以及怎么去避免的? 2.用不同难度的动态规划问题举例说明, 最 ...

  • 剑指 Offer 14- I. 剪绳子

    我服了.动态规划杀我. 可以说一说解决动态规划的思路(只做了两三道就总结了emmm) 1.识别动态规划问题 --重叠子问题:大问题可以分为一个个子问题.和分治策略分割的子问题不同(分治问题的子问题是相 ...

  • 葱烤比目鱼——家常经典快手0失败!

    葱烤比目鱼——家常经典快手0失败!

  • 100句世界名人金句,百读不厌,永世经典!0

    ​1. 生活总是让我们遍体鳞伤,但到后来,那些受伤的地方一定会变成我们最强壮的地方. 2. 我们花了两年学会说话,却要花上六十年来学会闭嘴. 3. 优于别人,并不高贵,真正的高贵应该是优于过去的自己. ...

  • 中国股市:史上最经典的T 0股票技巧!背起来,知买卖

    对于分时图震荡来说,早盘阶段的走势往往决定着全天的运行,也是T 0交易的核心时间段.在早盘阶段,我们可以逢低吸纳,也可以在冲高之后及时脱手,又或者是保持既定的持股待涨(或是持币观望)策略不变.这里,我 ...

  • 谍战经典!孙红雷成现象级,前三超9.0分

    张艺谋首部谍战片五一来袭,群星云集,口碑炸裂.这部新作集结了于和伟.张译.秦海璐和朱亚文等实力派演员.影片改编自全勇先的原创故事,制片方也邀请他担任电影的编剧,同时他还是电视剧<悬崖>的编 ...

  • 【淘县经典】T 0分时的盘感怎么练

    分时的盘感怎么练及认知提升 很简单,就是每天拿今天日内的几个异动最厉害的龙头,看他们的分时来进行学就行了. 可以的话再对照一下,关键波段的启动时机,大盘的日k及分时位势情况.然后也结合一下当天这个时段 ...

  • 今日知识点(设置UG10.0经典界面)

    数控,模具人才千千万,其实你不孤单,只是你没有找到组织 目前3W人已关注 特此说明 |  以上内容

  • 4.七年级数学下册:若m²-2mn+2n²-8n+16=0,怎么求mn的值?配方法经典考题

    欢迎您来到方老师数学课堂,请点击上方的名片,关注方老师数学课堂.所有的视频内容,全部免费,请大家放心关注,放心订阅. 七年级数学下册:若m²-2mn+2n²-8n+16=0,怎么求mn的值?配方法经典 ...

  • 「翔博精选指标」 经典MACD二次洪峰爬上0轴并金叉 通达信选股公式 副图 源码 贴图

    做价值的传播者,一路同行,一起成长 适用软件:通达信 公式说明:不包含未来函数,不加密,副图公式 指标公式描述 经典MACD二次洪峰爬上0轴并金叉 通达信选股公式 副图 源码 贴图 一次选出来的股票有 ...

  • 波什真的软吗?生涯五大经典比赛,曾0.5秒绝杀开拓者!

    依稀记得波什初进联盟,人们给他贴的标签是加内特的接班人.当他在猛龙打出名堂,人们渐渐的遗忘了那个属于卡特麦迪的猛龙,波什加冕龙王!此后奔赴热火组建三巨头,却只落得三当家:而当詹姆斯韦德相继离队,却是波 ...