乳化剂HIB阈值与应用:
乳化剂HIB阈值与应用:
随着食品加工业的迅速发展,各种食品添加剂、食品新配料层出不穷,所加工的食品品种不断增多,品质也不断增高,可以说现代食品工业离不开现代食品添加剂,对于面包加工业来说同样如此。
乳化剂是最重要的一类食品添加剂,除具有典型的表面活性作用外,还能与面包中的碳水化合物、蛋白质、脂类发生特殊的相互作用,而起到多种功效。在面包中使用食品乳化剂,不仅能改善面包的感官性状,提高产品质量,延长面包贮存期,而且还可以防止面包变质,便于面包加工。乳化剂现已成为面包加工中必不可少的食品添加剂。然而,乳化剂种类繁多,对于普通的面包加工者来说,很难做出正确的选择与应用。那么,如何正确选择乳化剂种类、复配方式及添加方式,使之在面包中达到预期的应用效果,这正是业内关注的焦点。
首先,应熟悉几个基本概念。我们都知道水与油是不相溶的,将二者简单混合放置一会,很快就会分为两层,即上层是油,下层是水,理论上我们将水和油这两种不同的液体状态称为“相”;水与油的分界面称为“表面”或“界面”;油与水不相溶,是因为水油界面上是存在着作用力,该作用力称为“表面张力”或“界面张力”。通过添加乳化剂并配合搅拌等机械作用,设法使水油混合后油呈微滴状分散于水中,此过程或作用就称为“乳化”,得到的混合物称为一个“分散体系”,在体系中水的量大,称为“连续相”,而油的量小,称为“分散相”。所添加的能使互不相溶的两相 (如水和油)中的一相(如油)均匀地分散于另一相(如水)的物质,就称为乳化剂。
乳化剂之所以能够起乳化作用,能够使油相稳定地分散在水相中,这是它所具有的特殊分子结构的功劳。原来乳化剂分子本身是一个矛。盾的统一体,它分子结构的一端是极性基团,能够与极性液体尤其是与水相亲合,而它分子结构的另一端为非极性基团,能够与非极性液体,特别是极性小的有机溶剂相亲合。正是由于乳化剂分子这种既与水相亲又与油相合的双重特性,使得它与水油体系接触时,乳化剂分子亲水一端在水相中伸展,亲油一侧在油相中放松,这样其分子就能够在两相界面上发生定向排列,从而降低水油两相表面张力,起到稳定乳液和分散体系的作用。
通过以上我们已经了解了一些基本概念,如“相、界面、表面张力、分散体系、分散相、连续相、乳化剂”,以及乳化剂分子结构的特点等。明白了催化剂分子中既含有与油相合非极性基团,正是由于这矛盾的双重特性,使得它与水油体系接触时,亲水一端在水相中伸展,亲油一侧在油相中放松,这样乳化剂分子能够在两相界面变得亲水,水相界面变得相容,起到稳定乳液和分散体系的作用。
值得注意的是,“乳化剂是一大类物质,虽然它们都具有亲水基团与亲油基团,但由于乳化剂所含有的亲水基团、亲油基团的种类、数量不尽相同,最终乳化剂的特性、功用也不相同,有时其作用甚至完全相反,比如有的乳化剂起乳化、稳定作用,有的却是破乳、消泡作用,为此,为了正确选择和使用乳化剂,我们有必要搞清乳化剂的和种类、特性驻其应用范围。
乳化剂的种类十分繁多,实际应用时,常会听到“这是离子型乳化剂“、”“这是非离子型乳化剂”、“所需乳化剂的HJB值范围”…这此专用术语常常让非专业人士摸不着头脑。其实,离子型乳化剂也好,非离子型乳化剂也好,它们都是根据乳化剂的亲水基团在水中是否解离来分别的。进一步细分,离子型乳化剂按其在水中生成的离子的种类可分为三类,即阴离子、阳离子和两性乳化剂。阴离子乳化剂起界面活性作用的是它在水溶液中电离形成的带负电荷的活性离子(即阴离子)。相应的阳离子乳化剂起界面活性作用的是它在水溶液中电离形成的带正电荷的活性离子(即阳离子)。两性乳化剂可分为两类,即两性电解质类和甜菜碱类。两性电解质类其分子在溶液(按介质)既可作为质子给予体,也可作为质子接受体起作用,既它们可以作为酸,也可以作为碱进行反应。相反,甜菜碱类不解离,在溶液中以“内盐”形式存在。这些化合物也称为两性离子,但与真正的两性电解质不同,它们在酸性和等电点以下的情况时表现出两性电解 质的典型反应。在食品中应用的离子型乳化剂主要有:硬脂酰乳酸钠、磷脂以及离子性高分子化合物,如黄原胶、羧甲基纤维素等。
非离子乳化剂是指在水溶液中不形成离子的表面活性剂,起界面活性作用的是整个分子。大多数食品乳化剂均属此类,如甘油酯类、山梨醇脂类、木糖醇酯类、蔗糖酯类及丙二醇酯类等。按离子的类型对乳化剂进行分类是最常用的和最方便的方法,各种离子型乳化剂均具有各自的特性,因此只需弄清乳化剂的离子类型,就可以推测应用范围。
以下内容主要是与大家谈谈关于催化剂的HBL值的话题。我们知道乳化剂不仅种类繁多,而且功能各异,有些功能甚至是相对的。那么在实际应用中,该如何掌握尺度,如何正确地选择乳化剂 是十分关健的问题。到现在为止,大家都已清楚乳化剂是既亲水且亲油的两性物质。尽管乳化剂均具有亲水、亲油两种特性,但显然对每一种具体的乳化剂而言,它的亲水亲油性程度是有差异的,在因如此,乳化剂才表现出不同功用。例如,有的亲水性强而易溶于水,有的亲油性强呈现易于油特性;有的起肋泡作用,而的的起消泡作用。
那么一种乳化剂的具体情况是亲水性强,还是亲油性强,怎样来进行表示,有没有统一地标准?这是使用乳化剂企业关心的问题。而HBL值就是用来度量乳化剂分子亲水、亲油基团的大小和程度的,即亲水亲油平衡值,简称HBL值。亲油性强的乳化剂的HBL值较小,通常小于10;亲水性强的乳化剂HBL值较大,一般超过10。食品乳化剂的HBL值从2.8到40不等。
乳化剂的HBL值部分与溶解性有关,HBL值决定形成乳状的类型,是制备大多数乳状液的有用工具,借助于HBL值能够看出乳化剂的表现,减少乳化剂试验次数。例如,蔗糖脂肪酸酯亦称脂肪酸酯糖酯,是一种常用的乳化剂,可细分为单脂肪酸脂、双脂肪酯和三脂肪酸酯,其亲水亲油平衡值HBL在3—15。单酯含量越多,HBL值越高,即亲水性越强,可用作O/W型(油/水型)乳化剂,HBL值越低,亲油性越强,可用作W/O型(水/型)乳化剂,低HBL值的蔗糖酯用于人造奶油,可是提高乳化稳定性。
碳水化合物或糖化物是食品的重要成分,它广泛存在于植物体中,是绿色植物经过光合作用的产物,占植物体比重的50%--80%。碳水化合物是人与动物的主要供能物质,而动物体内不能制造碳水化合物,主要靠植物性食品供给。
碳水化合物是有机碳化合物,由碳、氢、氧三种元素组成,可划分为单糖、低聚糖、多糖类和配糖类(糖苷)。碳水化合物是多羟基的醛、酮,或多羟基酮构成的,它不能再水解成为更简单碳水化合物。低聚糖是由配糖键相互连接的2—7个单糖,其基本性能与单糖相似。多糖由配糖键相连接的许多个单糖组成。一分子多糖水解后生成数千个单糖或单糖衍生的碳水化合物。同多糖 中存在一种单糖,水解后得到多个一种单糖,如淀粉、糊精、纤维素等。异多糖中存在两种或较多种单糖,水解后得到多个不同的单糖,如菊糖、半纤维素等。高分子多糖是由具有亲水和疏水区域的长直链或支链单糖组成的。
由于单糖及配糖键的结构特征,碳水化合物能够形成亲水和疏水区域(层),因此,乳化剂与碳水化合物之间可能形成两种相互作用方式,即通过氢键发生的亲水相互作用及由疏水键 产生的疏水相互作用。
单糖或低聚糖具有良好的水深性,没有疏水层,因皮与乳化剂不发生疏水作用。而高分子多糖则不然,能与乳化剂发生疏水作用。淀粉是食品工业中占有特殊地位的碳水化合物,因此许多学者都详细研究了乳化剂与淀粉的相互作用。淀粉由直链淀粉与链支链淀粉两部分组成,乳化剂与直链淀粉相互作用形成复合体,这对于面包、糕点等含淀粉食品的加工有着重要意义,例如可以增加该类食品的柔软性及保鲜性。直链淀粉一般以线型分子存在,但在水溶液中并不线型的,链在分子内氢键作用下发生卷曲,形成a-螺旋状结构,这种a-螺旋状结构的内部具有疏水作用区,乳化剂的疏水基团进入这种a-螺旋状结构内,并以疏水方式与这里结合起来,形成包合物,可见,乳化剂能够与a-螺旋状结构内的疏水层相互作用,并且各种乳化剂物理性质和结构不同而与直链淀粉的相互作用程度不同,复合体形成能力也不同。
研究结果表明,支链淀粉与乳化剂作用不形成复合物,原来支链淀粉形成螺旋体的可能性变小,乳化剂借助氢键加在支链淀粉的外部分支上,而发生支链淀粉与乳化剂的相互作用。
在面包等烘焙制品加工中,淀粉决定面团和面包的主要性能,而乳化剂 与淀粉的相互作用,可以从根本上必一些对于烘焙食品重要的淀粉性能。例如,利用乳化剂可以减少淀粉的吸水性和膨胀性,提高淀粉糊化温度。许多学者从不同角度研究和论述各种乳化剂对最大粘度的影响,有的使用一定的乳化剂来提高最大粘度,有的则利用乳化剂来降低最大黏度。此外,乳化剂还能够抑制和减小直链淀粉的老化,对面包起保鲜作用。
生产面包中使用的重要乳化剂甘油单酸酯(MG)、硬脂酸乳酸钙(CSL)、硬脂酰乳酸钠(MSL)和二乙酰酒石酸甘油单、二酸酯(DATEM,)对各种淀粉的糊化温度和黏度有不同的影响,均会使小麦淀粉的糊化温度和最大粘度提高。