爱与数学
这本书颠覆了我对数学家的印象,大部分内容看不太懂。 数学之路 爱德华·弗伦克尔出生于1968年,在苏联一个叫科诺姆纳的小镇渡过了童年。 他出身于知识分子家庭,从小就显出了对科学的浓厚兴趣。 童年的爱德华并不喜欢数学,觉得数学枯燥、乏味且缺乏实用性。 他喜欢物理,尤其是关于量子力学的知识,深深让他着迷。 少年总是热爱幻想,若一个概念有些浪漫色彩,自然更容易吸引少年的心。 量子力学吸引爱德华的,是“夸克”(一种比质子、中子更基本的物质构成粒子)。夸克的物理和哲学属性让他着迷,“夸克”这一名称的来源也让他倾心——一部叫《芬尼根的守灵夜》的梦幻小说。 《芬尼根的守灵夜》和其作者詹姆斯·乔伊斯小说中的一首诗第一次以呓语的方式呈现了“夸克”,后来这一名词被物理学家采用: 冲马克先生叫三声夸克! 他肯定没有从叫喊声中听到什么, 因为他听到的都是毫不相干的内容。 物理学家命名粒子时从文学中找灵感,这让小爱德华惊叹不已,也让他觉得科学不只是冷冰冰的逻辑和事实。 在那之前,他有很多“不务正业”的爱好,比如踢球、绘画等,一度认为自己不是干科学家的料,直到他了解提出夸克理论的诺贝尔物理奖得主盖尔曼也常常“不务正业”——爱好文学、语言学、建筑学,他才打消这种顾虑。 让爱德华喜欢上数学的,是他父亲的一位数学家朋友——叶夫根尼。 叶夫根尼看出了爱德华的聪慧和热情,想将这位充满潜力的年轻人引到数学之路。他向爱德华展示了盖尔曼夸克模型的数学基础,告诉爱德华如果要深入了解“八重道”(暗合佛教的“八正道”)和“夸克模型”(量子力学理论),就必须了解SU(3)群,要了解SU(3)群就必须先了解“对称”的概念,然后叶夫根尼给爱德华看了一些八重态的图和公式。 正是这些图和公式,让爱德华心中产生了一种前所未有的悸动,当时他还看不懂,但求索的愿望已被点燃。 八重态 在这之前,爱德华心目中的数学无非是二次方程、三角函数、微积分之类的知识,再难的问题也跳不出这些框架,通过和叶夫根尼的交流,让他窥探到了一个截然不同的、完全超乎想象的数学世界。 从此,爱德华义无反顾地踏上了数学之路,那一年他才15岁,是一个即将踏入高中的少年。 后来的求学路途并不顺畅。 爱德华的父亲是犹太人,上个世纪八十年代的苏联,对犹太人的歧视非常严重,在升学和工作中,血统是相当敏感的因素。 爱德华的姓——“弗伦克尔”明显地显示着他的犹太血统,这一点,在报考大学时给他带来了莫大的麻烦甚至羞辱。 当时苏联最好的数学专业在莫斯科国立大学,这是爱德华心仪的学校。但是从他提交报考信息后,就受到了连续不断的阻挠。 起初是招生老师暗示他放弃报考,他没有退缩,在考场上,他以优异成绩通过了笔试,而在面试时,他遭遇了明目张胆的歧视:他的数学知识在一同参加面试的学生中矫矫不群,考官每提出一个问题,别的学生还在埋头思索,他已经得出了答案并举手示意,可考官竟视而不见,硬是等其他人举手回答; 在单独面试中,别的学生问答大都简单而顺利,考官唯独对他百般刁难,比如考官问他“圆的定义”,他回答“平面上与已知点距离相等的点的集合”,考官说:“错!应该是平面上与已知点距离相等的 所有 点的集合。” 类似这样鸡蛋里挑骨头的抬杠还有不少,即便爱德华才华横溢,这样的“考试”是无论如何也过不了的。 那时爱德华还是一个十几岁的孩子,这样的经历对他的打击可想而知。他沮丧、失望,但毫无办法,最终,和父母商量后,他决定报考石油天然气学院,那里的数学系不算最好,但也不差,最重要的是,石油天然气学院是苏联为数不多的不歧视犹太学生的学校。 在石油天然气学院,爱德华结识了很多有才华的同学,他们大都是被莫斯科国立大学拒绝的学生,后来成为了世界数学界有建树的翘楚。在那里,爱德华也结识了很多德才兼备的老师,受到了数学家瓦尔琴科和富克斯的指导,旁听了莫斯科国立大学基里洛夫的理论数学课(石油天然气学院只有应用数学课程),参加了著名的盖尔范德研讨会...... 爱德华的人生转折点 有的老师虽然在莫斯科国立大学任教,但他们从不歧视犹太学生,看重的只有热情和才华,所以尽管入学时遭遇了挫折,但几年的大学生活,还是让爱德华充实了不少,不论是学术上还是精神上。 1988年,20岁的爱德华从大学毕业了,充满激情、探索和乐趣的学术生活也将告一段落,虽然大学里取得了一些不菲的成就,他的前途依然黯淡——严酷的政治环境让有犹太血统的他很难在莫斯科学术界有一席之地。 好在第二年,他收到了哈佛大学的橄榄枝——全额奖学金在哈佛的学习和研究。 这是爱德华人生的转折点,在哈佛,他遇到了来自全世界各地的优秀数学家(其中包括华裔数学家丘成桐),和他们一起学习、讨论、研究,极大地丰富了爱德华的视野和知识;在美国,他也如饥似渴地吸收当地的文化,电影、脱口秀、音乐等等,都丰富了爱德华的见闻和精神。 在良好的学术氛围中,爱德华迅速成长为世界一流的数学家,并参与了数学界的“大一统理论”——朗兰兹纲领的研究,目前,这仍然是爱德华的主攻方向,虽然经历过一些坎坷,他依然继续着童年的梦想——对数学与量子物理对称的求索。 爱与数学,爱予数学,我想,除了好奇和理想,爱,也是爱德华在数学大道上一路前行的重要力量。 数学之理 书中,“数学之路”和“数学之理”是穿插并行的,作者将学术道路每个阶段所掌握的数学原理都用尽量通俗有趣的文字介绍给读者,尽管如此,这些深奥的数学知识还是很难理解,所涉及的深度已经是某些领域的核心或前沿,比如关于对称、辫群、李代数、n维空间等等。 不过,这也非常正常,完全不用因看不懂而沮丧,即便是数学从业人员,除了他自己研究的领域,也不可能尽数理解。 爱德华在前言中就说道:某些内容一时看不懂其实无伤大雅,我在从事数学研究时,有90%的时间会有不甚明白的感觉,所以,不必紧张。困惑(有时甚至是挫败感)是数学研究的一个必不可少的组成部分。 不过,我们要看到积极的一面:如果生活中的一切都无须费力便可理解,那样的生活将会多么无聊! 书中介绍了很多深奥的数学原理,虽然我自己连一知半解也谈不上,但皮毛之解不一定无益,下面就挑朗兰兹纲领做一些简单介绍。 朗兰兹纲领 在美剧《生活大爆炸》中,可爱的谢耳朵最终获得了诺贝尔奖,他的研究对象是弦论。弦论是大统一理论中的一种,大统一理论统一的是什么呢? 我们都知道相对论和量子力学是二十世纪最伟大的两大理论,可它们之间存在着一些不可调和的矛盾,即四种微观粒子相互作用力——万有引力、电磁力、强相互作用力、弱相互作用力各自为阵,互不融洽,没有遵循统一的规律,如果能找到一种理论能和谐地描述四种作用力,解决量子力学和相对论的冲突,那将多么完美! 所以从爱因斯坦到当今的理论物理学家,无不有着发现大一统理论的雄心,弦论以及后来超弦论,都是在这一征程中所发现的理论,然而离最终目标还有相当的距离。 言归正传,“朗兰兹纲领”,就是数学界的大一统理论。 数学分支领域众多,有数论、代数几何、约化群等等,它们仿佛一块块彼此隔绝的小岛,数学家们择善而居,埋头从事各自的研究。人们发现不同领域中衍生出来的各种理论其实有着一脉相承的联系,于是把各个领域统一起来的想法也就应运而生。 1967年,在一封加拿大数学家朗兰兹写给法国数学家韦伊的学术交流信件中,首次提出了朗兰兹纲领。 朗兰兹在普林斯顿大学的办公室,这曾是爱因斯坦使用过的办公室 要说明白什么是朗兰兹纲领,需要了解迦罗瓦群、李群、自守层等等的深奥概念,要讲清楚它们远超我的能力学识,普通的读者也无需深入了解,但是我们可以从最粗浅的框架一窥其奥: 我们中学都学习过,用一对数字可以表示平面上的一个点,称为“坐标”,用方程式可以表示平面诸如直线、圆等的图形,由此推广,可知数和平面是对应的,特定的图形可以转化成特定的数组,所表达的内容是一致的。 同理,数学中还有一些概念也具备这样的对应性质,如函数和层,群和范畴,这些概念有些属于数论,有些属于几何学,但是它们之间的联系不像数字和平面那么显而易见,朗兰兹纲领要做的,就是试图在貌似风马牛不相及的内容中捕捉潜在的联系,将它们统一起来。 也许有读者会提出这样的疑问:数学中各样的领域是在发展中自然产生的。 为什么要费力气将它们统一起来呢? 首先,这是在数学研究中浸淫深入的数学家们本能的追求,支离的数学碎片散发出互相联系的信号时,也激发了只有数学家们才能体验到的神秘和诱惑,和谐统一的美感和魅力,是他们无法抵挡的。古往今来人类的很多努力,都不一定是功利物质的,对神秘的好奇,对美感的追求,一直都是人类活动的重要动力。 其次,朗兰兹纲领与量子力学有难以分割的联系,其纽带是对偶性,物理和数学中都有这一课题,这也是爱德华的研究领域。物理的对偶性典型的就是电磁理论,电磁的相互转化就是对偶性的体现; 数学的对偶性很常见,比如乘法运算的交换律:a×b=b×a。这貌似微弱的相似性,当把它们推广深化到对偶群的概念时,就会出现令数学家激动的强相关。 所以朗兰兹纲领有可能揭示量子对偶性未被发现的秘密。 再次,虽然一些基础理论科学的研究似乎看不出实用价值,但它是技术进步甚至爆发的基础,数学与物理领域中的一些看似抽象、深奥的发现,常常会带来各种创新,并在日常生活中得到应用。 比如数论中的一些成果现在已经广泛应用在网络购物,每一笔交易,都会用到其中的模N算法。此外,基础科学的发展也是一个国家文化和实力的体现,关乎国家荣誉,这与艺术、哲学等是一样的。 在美国,朗兰兹纲领的研究得到了DARPA(美国国防部高级研究计划局,the Defense Advanced Research Projects Agency)的资助,获得了高达数百万美元的资金支持,这是迄今理论数学研究获得的最高支持。 数学之美 爱德华在本书序言中提到一个悖论:一方面,我们的日常生活离不开数学,网购、用GPS导航、上网检索信息,无不需要数学公式和运算法则;另一方面,大多数人却觉得数学是一门让人头疼的学科,唯恐避之不及。 爱德华也给出了对此的解释:首先,数学的确较其他学科更为抽象,难以理解;其次,学校里教的数学是很久以前的“陈芝麻烂谷子”,现代的数学已经有了长足发展,“珍藏着琳琅满目的珍宝”,只是大多数人不得其门而入,这就像美术课只教油漆刷墙,却从不展示达芬奇和毕加索的名作。 我相信,数学造诣如爱德华之深,枯燥已不复存在,费解已化为探索的乐趣,剩下的只是神秘、好奇、攀登和成就感。 可对于初入门径的学子,要体验到这种美感,还是要在枯燥抽象的漩涡中挣扎一番的,能随随便便就获得的,那叫“快感”,不是“美感”。 作为一个非数学专业的普通人,我更是无缘数学之美,但借着作者真诚激情的文字,对数学和数学家有了更美好的印象。 以前,我以为包括数学家在内的科学家,大概是《生活大爆炸》中谢耳朵的形象——聪明却执拗,骄傲而单纯,在自己的领域鲜有匹敌,生活其他方面却显得有些幼稚低能,虽没有如电视表现的那般夸张,但或多或少都会有这些气质。 而爱德华有着完全不同的形象,他热爱艺术,生活丰富,富有激情,爱憎分明,没有一点“呆气”,反而“灵气”满满。 以前,我以为数学研究是这个世界上第二枯燥的工作(第一枯燥是在实验室摇瓶子),每天对着一大堆数字、公式和图表苦思冥想,这得需要多大的毅力才能坚持啊! 而爱德华在书中却展现出,数学研究如艺术创作一样,是一个激情四射的求索过程,是一种个性十足的体验,需要热情,需要奉献精神,需要全身心投入,从中体验到的是思考的快乐、解决难题的成就感,其中当然有困惑和挫折,但更多的是心流和幸福。 数学之美是独特的,这在于数学规律是客观现实,而不是感官现实,它是一种独立存在,与人类意识无关的东西。 没有乔布斯,也许不会有现在的苹果手机,但没有哪一个数学家敢宣称没有自己,某条原理就不会出现,更没有人去为某个公式申请专利。 因为数学表达的,是宇宙的永恒真理,它对一切众生,不论肤色年龄性别种族,都是平等的,它无法私有,只能共享。 正如爱德华在书中的感叹:在这个世界上,再也没有其他任何事物能像数学那样深奥、典雅而又不属于某个人的了!