项目中常用的19条mysql优化
Java编程语言是一种简单、面向对象、分布式、解释型、健壮安全、与系统无关、可移植、高性能、多线程和动态的语言。如今Java已经广泛应用于各个领域的编程开发。
一、EXPLAIN
做MySQL优化,我们要善用EXPLAIN查看SQL执行计划。
下面来个简单的示例,标注(1,2,3,4,5)我们要重点关注的数据
type列,连接类型。一个好的sql语句至少要达到range级别。杜绝出现all级别
key列,使用到的索引名。如果没有选择索引,值是NULL。可以采取强制索引方式
key_len列,索引长度
rows列,扫描行数。该值是个预估值
extra列,详细说明。注意常见的不太友好的值有:Usingfilesort,Usingtemporary
二、SQL语句中IN包含的值不应过多
MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:selectidfromtable_namewherenumin(1,2,3)对于连续的数值,能用between就不要用in了;再或者使用连接来替换。
三、SELECT语句务必指明字段名称
SELECT*增加很多不必要的消耗(cpu、io、内存、网络带宽);增加了使用覆盖索引的可能性;当表结构发生改变时,前断也需要更新。所以要求直接在select后面接上字段名。
四、当只需要一条数据的时候,使用limit1
这是为了使EXPLAIN中type列达到const类型
五、如果排序字段没有用到索引,就尽量少排序
六、如果限制条件中其他字段没有索引,尽量少用or
or两边的字段中,如果有一个不是索引字段,而其他条件也不是索引字段,会造成该查询不走索引的情况。很多时候使用unionall或者是union(必要的时候)的方式来代替“or”会得到更好的效果
七、尽量用unionall代替union
union和unionall的差异主要是前者需要将结果集合并后再进行唯一性过滤操作,这就会涉及到排序,增加大量的CPU运算,加大资源消耗及延迟。当然,unionall的前提条件是两个结果集没有重复数据。
八、不使用ORDERBYRAND()
select id from `table_name` order by rand() limit 1000;12复制代码类型:[java]
上面的sql语句,可优化为
select id from `table_name` t1 join (select rand() * (select max(id) from `table_name`) as nid) t2 on t1.id > t2.nid limit 1000;123复制代码类型:[java]
九、区分in和exists,notin和notexists
select * from 表A where id in (select id from 表B)1复制代码类型:[java]
上面sql语句相当于
select * from 表A where exists(select * from 表B where 表B.id=表A.id)12复制代码类型:[java]
区分in和exists主要是造成了驱动顺序的改变(这是性能变化的关键),如果是exists,那么以外层表为驱动表,先被访问,如果是IN,那么先执行子查询。所以IN适合于外表大而内表小的情况;EXISTS适合于外表小而内表大的情况。
关于notin和notexists,推荐使用notexists,不仅仅是效率问题,notin可能存在逻辑问题。如何高效的写出一个替代notexists的sql语句?
原sql语句
select colname … from A表 where a.id not in (select b.id from B表)12复制代码类型:[java]
高效的sql语句
select colname … from A表 Left join B表 on where a.id = b.id where b.id is null12复制代码类型:[java]
取出的结果集如下图表示,A表不在B表中的数据
十、使用合理的分页方式以提高分页的效率
select id,name from table_name limit 866613, 201复制代码类型:[java]
使用上述sql语句做分页的时候,可能有人会发现,随着表数据量的增加,直接使用limit分页查询会越来越慢。
优化的方法如下:可以取前一页的最大行数的id,然后根据这个最大的id来限制下一页的起点。比如此列中,上一页最大的id是866612。sql可以采用如下的写法:
select id,name from table_name where id> 866612 limit 201复制代码类型:[java]
十一、分段查询
在一些用户选择页面中,可能一些用户选择的时间范围过大,造成查询缓慢。主要的原因是扫描行数过多。这个时候可以通过程序,分段进行查询,循环遍历,将结果合并处理进行展示。
如下图这个sql语句,扫描的行数成百万级以上的时候就可以使用分段查询
十二、避免在where子句中对字段进行null值判断
对于null的判断会导致引擎放弃使用索引而进行全表扫描。
十三、不建议使用%前缀模糊查询
例如LIKE“%name”或者LIKE“%name%”,这种查询会导致索引失效而进行全表扫描。但是可以使用LIKE“name%”。
那如何查询%name%?
如下图所示,虽然给secret字段添加了索引,但在explain结果果并没有使用
那么如何解决这个问题呢,答案:使用全文索引
在我们查询中经常会用到selectid,fnum,fdstfromtable_namewhereuser_namelike'%zhangsan%';。这样的语句,普通索引是无法满足查询需求的。庆幸的是在MySQL中,有全文索引来帮助我们。
创建全文索引的sql语法是:
ALTER TABLE `table_name` ADD FULLTEXT INDEX `idx_user_name` (`user_name`);1复制代码类型:[java]
使用全文索引的sql语句是:
select id,fnum,fdst from table_name where match(user_name) against('zhangsan' in boolean mode);12复制代码类型:[java]
注意:在需要创建全文索引之前,请联系DBA确定能否创建。同时需要注意的是查询语句的写法与普通索引的区别
十四、避免在where子句中对字段进行表达式操作
比如
select user_id,user_project from table_name where age*2=36;1复制代码类型:[java]
中对字段就行了算术运算,这会造成引擎放弃使用索引,建议改成
select user_id,user_project from table_name where age=36/2;1复制代码类型:[java]
十五、避免隐式类型转换
where子句中出现column字段的类型和传入的参数类型不一致的时候发生的类型转换,建议先确定where中的参数类型
十六、对于联合索引来说,要遵守最左前缀法则
举列来说索引含有字段id,name,school,可以直接用id字段,也可以id,name这样的顺序,但是name,school都无法使用这个索引。所以在创建联合索引的时候一定要注意索引字段顺序,常用的查询字段放在最前面
十七、必要时可以使用forceindex来强制查询走某个索引
有的时候MySQL优化器采取它认为合适的索引来检索sql语句,但是可能它所采用的索引并不是我们想要的。这时就可以采用forceindex来强制优化器使用我们制定的索引。
十八、注意范围查询语句
对于联合索引来说,如果存在范围查询,比如between,>,<等条件时,会造成后面的索引字段失效。
十九、关于JOIN优化
LEFTJOINA表为驱动表
INNERJOINMySQL会自动找出那个数据少的表作用驱动表
RIGHTJOINB表为驱动表
注意:MySQL中没有fulljoin,可以用以下方式来解决
select * from A left join B on B.name = A.name where B.name is null union all select * from B;12345复制代码类型:[java]
尽量使用innerjoin,避免leftjoin
参与联合查询的表至少为2张表,一般都存在大小之分。如果连接方式是innerjoin,在没有其他过滤条件的情况下MySQL会自动选择小表作为驱动表,但是leftjoin在驱动表的选择上遵循的是左边驱动右边的原则,即leftjoin左边的表名为驱动表。
合理利用索引
被驱动表的索引字段作为on的限制字段。
利用小表去驱动大表
从原理图能够直观的看出如果能够减少驱动表的话,减少嵌套循环中的循环次数,以减少IO总量及CPU运算的次数。
巧用STRAIGHT_JOIN
innerjoin是由mysql选择驱动表,但是有些特殊情况需要选择另个表作为驱动表,比如有groupby、orderby等「Usingfilesort」、「Usingtemporary」时。STRAIGHT_JOIN来强制连接顺序,在STRAIGHT_JOIN左边的表名就是驱动表,右边则是被驱动表。在使用STRAIGHT_JOIN有个前提条件是该查询是内连接,也就是innerjoin。其他链接不推荐使用STRAIGHT_JOIN,否则可能造成查询结果不准确。
这个方式有时可能减少3倍的时间。