《測圓海鏡》﹝諸差7﹞之明雙差、 雙差等式說

測圓海鏡諸差7﹞之明雙差

雙差等式

上傳書齋名:瀟湘館112  Xiāo Xiāng Guǎn 112

何世強 Ho Sai Keung

提要:《測圓海鏡》乃金‧李冶所撰,其書之“圓城圖式”含十四勾股形,連同原有之大勾股形共十五勾股形。本文著重明雙差、

雙差之相關等式及其証明。

關鍵詞:明雙差、

雙差、明差、虛黃、極雙差

《測圓海鏡》乃金‧李冶所撰,書成於 1248 年,時為南宋淳祐八年。該書卷一“圓城圖式”主要討論與十五勾股形相關之等式,本文介紹其部分等式並作出証明。

本文所引用之勾股式源自“圓城圖式”之十五勾股形,a1b1c1 乃最大勾股形天地乾之勾、股及弦長。故 a1b1c1 又稱為大勾﹝地乾﹞、大股﹝天乾﹞及大弦﹝天地﹞。

《測圓海鏡》涉及一系列之勾股恆等式,所有恆等式皆與十五勾股形有關。十五勾股形中最大者為天地乾,其三邊勾股弦分別以 a1b1c1 表之,其餘十四勾股形三邊勾股弦則分別以 aibici 表之,其中 1 < i ≦ 15。但 aibici 均可以 a1b1c1 表之,此乃《測圓海鏡》之精髓。注意勾股定理成立,即  ai2 + bi2 = ci2

有關以 a1b1c1aibici 之式可參閱筆者另文〈《測圓海鏡》“圓城圖式”之十二勾股弦算法〉。

以下左為“圓城圖式”右為“圓城圖式十五句股形圖”。

注意圓徑為 a1 + b1c1,見上圖之東南西北圓。圓徑乃十五勾股形三邊重要因子之一,其他因子為最大勾股形之勾股較、勾弦較及股弘較。

本文主要談及十五勾股形有關三邊相差之等式,其中部分等式曾在“五和五較”等式中出現,可參閱筆者相關之文章。

注意等式 (c1b1)(c1a1) =

(a1 + b1c1)2﹝雙差積圓徑平方半等式﹞。

本文取自《測圓海鏡‧卷一‧諸差》。筆者有以下之文涉及〈諸差〉:

《測圓海鏡》之大差差、小差差等式﹝諸差1﹞

《測圓海鏡》之髙差、旁差、極雙差等式﹝諸差2﹞

《測圓海鏡》之極差等式﹝諸差3﹞

《測圓海鏡》之角差及虛差等式說﹝諸差 4﹞

《測圓海鏡》﹝諸差5﹞之髙差、黃廣及黃長等式

《測圓海鏡》﹝諸差6﹞之邊弦、底弦等式說

本文乃以上六文之延續。

以下為有關“明雙差”及“

雙差”相關之等式:

明雙差亦為明

二大差。其較則明差也。

雙差亦為明

二小差。其較則

差也。明雙差內減明差即虛黃。

雙差上加

差亦同上。以明雙差加明和即兩明弦。以

雙差加

和則兩

弦也。以明雙差減明和而半之即明黃又為虛大差。以

雙差減於

和而半之即

黃,又為虛小差也。以虛大差減明和即為明弦。以虛小差減

和即

弦也。明雙差

雙差相較則次差也。明雙差

雙差相併,加於明

二和共則為兩個極雙差。若以減於明

二和共則為兩個虛雙差也。明雙差上加虛雙差即明

二股共。

雙差上加虛雙即明

二勾共也。

以下為各條目之証明:

明雙差亦為明

二大差。

“明雙差”指明弦勾弦較與明弦股弦較之和。明弦在勾股形日月南 14。

明弦勾弦較 = c14a14 =

(b1c1 + a1) (c1a1)2

明弦股弦較 = c14b14 =

(c1a1)(b1c1 + a1)(c1b1) 。

所以明雙差,即:

(b1c1 + a1) (c1a1)2 +

(c1a1)(b1c1 + a1)(c1b1)

=

(b1c1 + a1) (c1a1)[(c1a1) + (c1b1)]

=

(b1c1 + a1) (c1a1) (2c1a1b1) #。

明大差即明弦勾弦較 =

(b1c1 + a1) (c1a1)2

大差即

弦上勾弦較 = c15a15

c15a15 =

(c1b1)(a1c1 + b1) –

(c1b1)(a1c1 + b1)

=

(c1b1)(c1a1)(b1 + a1c1)

= 明弦股弦較。

明大差+

大差

=

(b1c1 + a1) (c1a1)2 +

(c1b1)(c1a1)(b1 + a1c1)

=

(b1c1 + a1)(c1a1)[(c1a1) + (c1b1)]

=

(b1c1 + a1) (c1a1) (2c1a1b1) #。

所以明弦勾弦較+ 明弦股弦較 = 明大差 +

大差。

其較則明差也。

“其較”指明弦勾弦較與明弦股弦較之差,即:

(b1c1 + a1) (c1a1)2

(c1a1)(b1c1 + a1)(c1b1)

=

(b1c1 + a1) (c1a1)[(c1a1) – (c1b1)]

=

(b1c1 + a1) (c1a1)(b1a1) #。

“明差”指明弦勾股較。

明弦勾股較=b14a14=

(c1a1)(b1c1 + a1) –

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

]

=

(c1a1)(b1c1 + a1)(b1a1) #。

比較兩式可知相同,所以明雙差與明

二大差之差 = 明差。

雙差亦為明

二小差。

雙差”指

弦上勾弦較加

弦上股弦較。

弦上勾弦較 = c15a15

=

(c1b1)(a1c1 + b1) –

(c1b1)(a1c1 + b1)

=

(c1b1)(a1c1 + b1)[

– 1]

=

(c1b1)(b1 + a1c1)[c1a1]

=

(c1b1)(c1a1)(b1 + a1c1) 。

弦上股弦較 = c15b15

c15b15=

(c1b1)(a1c1 + b1) –

(c1b1)(a1c1 + b1)

=

(c1b1)(a1c1 + b1)[

– 1]

=

(c1b1)(a1c1 + b1)(c1b1)

=

(c1b1)2(a1c1 + b1) 。

弦上雙差

=

(c1b1)(c1a1)(b1 + a1c1) +

(c1b1)2(a1c1 + b1)

=

(c1b1)(b1 + a1c1)[(c1a1) + (c1b1)]

=

(c1b1)(b1 + a1c1)(2c1a1b1) #。

明小差即明弦股弦較 = c14b14

c14b14=

(c1a1)(b1c1 + a1) –

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

– 1]

=

(c1a1)(b1c1 + a1)(c1b1) 。

小差”指

弦上股弦較 = c15b15

c15b15=

(c1b1)(a1c1 + b1) –

(c1b1)(a1c1 + b1)

=

(c1b1)(a1c1 + b1)[

– 1]

=

(c1b1)(a1c1 + b1)(c1b1)

=

(c1b1)2(a1c1 + b1) 。

明小差 +

小差,即:

(c1a1)(b1c1 + a1)(c1b1) +

(c1b1)2(a1c1 + b1)

=

(b1c1 + a1)(c1b1)[(c1a1) + (c1b1)]

=

(b1c1 + a1)(c1b1)(2c1a1b1) #。

比較兩式可知相同,所以

雙差 = 明

二小差。

其較則

差也。

“其較”指

雙差之較 =

勾弦較 –

股弦較

= (c15a15) – (c15b15)

= c15a15c15 + b15

= b15a15

以上即

差,即

弦上勾股較。

弦上勾股較 = b15a15

=

(c1b1)(a1c1 + b1) –

(c1b1)(a1c1 + b1)

=

(c1b1)(a1c1 + b1)(

)

=

(c1b1)(a1c1 + b1)(b1a1) #。

明雙差內減明差即虛黃。

明雙差= 明弦股弦較 + 明弦勾弦較 = (c14b14) + (c14a14);

明差= b14a14

明雙差內減明差即(c14b14) + (c14a14)– (b14a14)

= c14b14 + c14a14b14 + a14

= 2(c14b14)

= 2 ×

(c1a1)(b1c1 + a1)(c1b1) ﹝見前條﹞

=

(c1a1)(b1c1 + a1)(c1b1) 。

“虛黃”即太虛弦三事較 = 弦和較 = b13 + a13c13

–       c13 + b13 + a13

= –

(c1b1)(c1a1) +

(c1b1)(c1a1) +

(c1b1)(c1a1)

=

(c1b1)(c1a1)(– c1 + b1 + a1)

=

(a1 + b1c1)2(– c1 + b1 + a1) ﹝雙差積圓徑平方半等式﹞。

所以明雙差內減明差 = 虛黃。

雙差上加

差亦同上。

雙差上加

差 =

勾弦較 +

股弦較 +

勾股較

= (c15a15) + (c15b15) + (b15a15)

= c15a15 +c15b15 + b15a15

= 2(c15a15)

= 2 ×

(c1b1)(c1a1)(b1 + a1c1)﹝見前條﹞

=

(c1b1)(c1a1)(b1 + a1c1)。

此式同上。

以明雙差加明和即兩明弦。

已知明弦﹝在勾股形日月南 14﹞勾弦較=c14a14

c14a14 =

(c1a1)(b1c1 + a1) –

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

– 1]

=

(b1c1 + a1)(c1a1)(c1a1)

=

(b1c1 + a1) (c1a1)2

明弦股弦較 = c14b14

=

(c1a1)(b1c1 + a1) –

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

– 1]

=

(c1a1)(b1c1 + a1)(c1b1) 。

所以明雙差

=

(b1c1 + a1) (c1a1)2 +

(c1a1)(b1c1 + a1)(c1b1)

=

(b1c1 + a1) (c1a1)[(c1a1) + (c1b1)]

=

(b1c1 + a1) (c1a1)(2c1a1b1)。

已知“明和”即明弦勾股和。

明弦勾股和=b14 + a14 =

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

+

]

=

(c1a1)(b1c1 + a1)(a1 + b1) 。

明雙差加明和

=

(c1a1)(b1c1 + a1)(a1 + b1) +

(b1c1 + a1)(c1a1)(2c1a1b1)

=

(b1c1 + a1)(c1a1)[(a1 + b1) + (2c1a1b1)]

=

(b1c1 + a1)(c1a1) × 2c1

=

(c1a1)(b1c1 + a1)。

已知明弦 = c14 =

(c1a1)(b1c1 + a1)。

兩明弦 =

(c1a1)(b1c1 + a1)。

所以以明雙差加明和 = 兩明弦。

另法:

明雙差+ 明和 = 明弦勾弦較 + 明弦股弦較 + 明弦勾股和

= (c14a14) + (c14b14) + (a14 + b14)

= c14a14 +c14b14+ a14 + b14

= 2c14

以上即為兩明弦。

雙差加

和則兩

弦也。

雙差 +

和 =

弦勾弦較 +

弦股弦較 +

弦勾股和

= (c15a15) + (c15b15) + (a15 + b15)

= c15a15 +c15b15+ a15 + b15

= 2c15

以上即為兩

弦。其實以上之形式任何勾股形皆適用。

以明雙差減明和而半之即明黃,又為虛大差。

以明雙差減明和而半之

=

(明和 – 明雙差) =

[明和 – (明弦勾弦較+ 明弦股弦較)]

=

{(a14+ b14)– [(c14a14) + (c14b14)]}

=

[a14 + b14 – (c14a14) – (c14b14)]

=

(a14 + b14c14 + a14c14 + b14)

= a14 + b14c14

以上即為明黃,或稱之為明黃方,又名明弦三事較,又名明弦弦和較。

明弦三事較 = 弦和較 =b14 + a14c14

b14 + a14c14

= –

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[ –

+

+

]

=

(c1a1)(b1c1 + a1)( – c1 + b1 + a1)

=

(c1a1)(b1c1 + a1)2

=

(c1a1)(c1b1)(c1a1)

=

(c1b1)(c1a1)2 #。

“虛大差”即太虛勾弦較。

太虛勾弦較=c13a13=

(c1b1)(c1a1) –

(c1b1)(c1a1)

=

(c1b1)(c1a1)[

– 1]

=

(c1b1)(c1a1)(c1a1)

=

(c1b1)(c1a1)2 #。

所以以明雙差減明和而半之 = 明黃 = 虛大差。

雙差減於

和而半之即

黃,又為虛小差也。

雙差減

和而半之,即:

(

和 –

雙差) =

[

和 – (

弦勾弦較 +

弦股弦較)]

=

{(a15+ b15)– [(c15a15) + (c15b15)]}

=

[a15 + b15 – (c15a15) – (c15b15)]

=

(a15 + b15c15 + a15c15 + b15)

= a15 + b15c15

以上即為

黃。

黃即

弦三事較

弦上三事較即

弦上弦和較 = (b15 + a15) – c15 = b15 + a15c15

b15 + a15c15

= –

(c1b1)(a1c1 + b1) +

(c1b1)(a1c1 + b1)
 +

(c1b1)(a1c1 + b1)

=

(c1b1)(a1c1 + b1)[ –

+

+

]

=

(c1b1)(a1c1 + b1)( – c1 + b1 + a1)

=

(c1b1)(a1c1 + b1)2

=

(c1a1)(c1b1)(c1b1) ﹝雙差積圓徑平方半等式﹞

=

(c1b1)2(c1a1) #。

虛小差即太虛股弦較

太虛股弦較= c13b13 =

(c1b1)(c1a1) –

(c1b1)(c1a1)

=

(c1b1)(c1a1)[

– 1]

=

(c1a1)(c1b1)(c1b1)

=

(c1a1)(c1b1)2 #。

比較兩式,可知

弦上三事較 = 太虛上股弦較。

以虛大差減明和即為明弦。

已知虛大差即太虛勾弦較,明和即明弦勾股和。

明弦勾股和=b14 + a14 =

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

+

]

=

(c1a1)(b1c1 + a1)(a1 + b1) 。

太虛勾弦較=c13a13=

(c1b1)(c1a1) –

(c1b1)(c1a1)

=

(c1b1)(c1a1)[

– 1]

=

(c1b1)(c1a1)(c1a1)

=

(b1c1 + a1)2(c1a1)。

虛大差減明和,即:

(c1a1)(b1c1 + a1)(a1 + b1) –

(b1c1 + a1)2(c1a1)

=

(c1a1)(b1c1 + a1)[(a1 + b1) – (b1c1 + a1)]

=

(c1a1)(b1c1 + a1)(a1 + b1b1 + c1a1)

=

(c1a1)(b1c1 + a1) × c1

=

(c1a1)(b1c1 + a1) #。

日月為明弦﹝簡稱明弦﹞:c14 =

(c1a1)(b1c1 + a1) #。

所以以虛大差減明和 = 明弦。

以虛小差減

和即

弦也。

“虛小差”指太虛股弦較。

太虛股弦較= c13b13 =

(c1b1)(c1a1) –

(c1b1)(c1a1)

=

(c1b1)(c1a1)[

– 1]

=

(c1a1)(c1b1)(c1b1)

=

(c1a1)(c1b1)2

=

(a1c1 + b1)2(c1b1) ﹝雙差積圓徑平方半等式﹞。

和”指

弦上勾股和 = b15 +a15

b15 + a15 =

(c1b1)(a1c1 + b1) +

(c1b1)(a1c1 + b1)

=

(c1b1)(a1c1 + b1)(

+

)

=

(c1b1)(a1c1 + b1)(b1 + a1) 。

以虛小差減

和,即:

(c1b1)(a1c1 + b1)(b1 + a1) –

(a1c1 + b1)2(c1b1)

=

(c1b1)(a1c1 + b1)[(b1 + a1) – (a1c1 + b1)]

=

(c1b1)(a1c1 + b1)(b1 + a1a1 + c1b1)

=

(c1b1)(a1c1 + b1) × c1

=

(c1b1)(a1c1 + b1) #。

已知山川

弦﹝簡稱

弦﹞:c15 =

(c1b1)(a1c1 + b1) #。

所以以虛小差減

和 =

弦也。

明雙差

雙差相較則次差也。

已知明雙差 =

(b1c1 + a1)(c1a1)(2c1a1b1)。

弦上勾弦較 = c15a15

=

(c1b1)(a1c1 + b1) –

(c1b1)(a1c1 + b1)

=

(c1b1)(a1c1 + b1)[

– 1]

=

(c1b1)(b1 + a1c1)[c1a1]

=

(c1b1)(c1a1)(b1 + a1c1) 。

弦上股弦較 = c15b15

c15b15=

(c1b1)(a1c1 + b1) –

(c1b1)(a1c1 + b1)

=

(c1b1)(a1c1 + b1)[

– 1]

=

(c1b1)(a1c1 + b1)(c1b1)

=

(c1b1)2(a1c1 + b1) 。

弦上雙差,即:

(c1b1)(c1a1)(b1 + a1c1) +

(c1b1)2(a1c1 + b1)

=

(c1b1)(b1 + a1c1)[(c1a1) + (c1b1)]

=

(c1b1)(b1 + a1c1)(2c1a1b1)。

明雙差

雙差較,即:

(b1c1 + a1) (c1a1) (2c1a1b1) –

(c1b1)(b1 + a1c1)(2c1a1b1)

=

(b1 + a1c1)(2c1a1b1)[(c1a1) – (c1b1)]

=

(a1 + b1c1)(2c1a1b1)[c1a1c1 + b1]

=

(a1 + b1c1)(2c1a1b1)(b1a1) #。

二差共名次差。

明差指明勾與明股之差,明勾與明股之式見前。

明差 = b14a14 =

(c1a1)(b1c1 + a1) –

(c1a1)(b1c1 + a1)

=

(c1a1)( a1 + b1c1)[

]。

差指

勾與

股之差,

勾與

股之式亦見前。

差 = b15a15 =

(c1b1)(a1c1 + b1) –

(c1b1)(a1c1 + b1)

=

(c1b1)( a1 + b1c1) [

]。

二差共 = 明差 +

=

(c1a1)( a1 + b1c1)[

] +

(c1b1)( a1 + b1c1) [

]

=

( a1 +b1c1)[

](c1a1 + c1b1)

=

(a1 + b1c1)(2c1a1b1) #。

上式是為次差。故明雙差

雙差相較= 次差。

明雙差

雙差又相併,加於明

二和共,則為兩個極雙差。

明雙差

雙差共

=

(b1c1 + a1) (c1a1) (2c1a1b1) +

(c1b1)(b1 + a1c1)(2c1a1b1)

=

(b1 + a1c1)(2c1a1b1)[(c1a1) + (c1b1)]

=

(a1 + b1c1)(2c1a1b1)[c1a1b1 + c1]

=

(a1 + b1c1)(2c1a1b1)2

已知明弦勾股和是為明和 = b14 + a14

b14 + a14 =

(c1a1)(b1c1 + a1) +

(c1a1)(b1c1 + a1)

=

(c1a1)(b1c1 + a1)[

+

]

=

(c1a1)(b1c1 + a1)(a1 + b1) 。

弦上勾股和是為

和 = b15 + a15

b15 + a15 =

(c1b1)(a1c1 + b1) +

(c1b1)(a1c1 + b1)

=

(c1b1)(a1c1 + b1)(

+

)

=

(c1b1)(a1c1 + b1)(b1 + a1) 。

二和共,即:

(c1a1)(b1c1 + a1)(a1 + b1) +

(c1b1)(a1c1 + b1)(b1 + a1)

=

(b1c1 + a1)(a1 + b1)[ (c1a1) + (c1b1)]

=

(b1c1 + a1)(a1 + b1)(2c1a1b1) 。

明雙差

雙差相並,加於明

二和共,即:

(a1 + b1c1)(2c1a1b1)2+

(b1c1 + a1)(a1 + b1)(2c1a1b1)

=

(a1 + b1c1)(2c1a1b1)(2c1a1b1 + a1 + b1)

=

(a1 + b1c1)(2c1a1b1) × 2c1

=

(a1 + b1c1)(2c1a1b1) #。

以下為極勾弦差及股弦差:

c12a12 =

(a1 + b1c1) –

(a1 + b1c1) =

(a1 + b1c1)[

– 1],

c12b12 =

(a1 + b1c1) –

(a1 + b1c1) =

(a1 + b1c1)[

– 1],

極雙差 = 即以上兩式之和,即:

(a1 + b1c1)[

– 1] +

(a1 + b1c1)[

– 1]

=

(a1 + b1c1)(c1a1) +

(a1 + b1c1)(c1b1)

=

(a1 + b1c1)(c1a1 + c1b1)

=

(a1 + b1c1)(2c1a1b1)。

兩個極雙差 ﹝上式乘以2﹞=

(a1 + b1c1)(2c1a1b1) #。

所以明雙差 +

雙差 + 明

二和共 = 兩個極雙差。

若以減於明

二和共則為兩個虛雙差也。

明雙差

雙差相併,減於明

二和共,即:

(b1c1 + a1)(a1 + b1)(2c1a1b1) –

(a1 + b1c1)(2c1a1b1)2

=

(a1 + b1c1)(2c1a1b1)( a1 + b1 – 2c1 + a1 + b1)

=

(a1 + b1c1)2(2c1a1b1) × 2

=

(a1 + b1c1)2(2c1a1b1) #。

“虛雙差”即太虛勾弦較與太虛股弦較之和﹝在勾股形月山泛 13﹞。

已知太虛勾弦較 = c13a13 =

(c1b1)(c1a1) –

(c1b1)(c1a1)

=

(c1b1)(c1a1)[

– 1]

=

(c1b1)(c1a1)(c1a1)

=

(c1b1)(c1a1)2

太虛股弦較= c13b13 =

(c1b1)(c1a1) –

(c1b1)(c1a1)

=

(c1b1)(c1a1)[

– 1]

=

(c1a1)(c1b1)(c1b1)

=

(c1a1)(c1b1)2

所以虛雙差 =

(c1b1)(c1a1)2 +

(c1a1)(c1b1)2

=

(c1a1)(c1b1)[(c1a1) + (c1b1)]

=

(c1a1)(c1b1)(2c1a1b1)

=

(a1 + b1c1)2(2c1a1b1)。

兩個虛雙差=

(a1 + b1c1)2(2c1a1b1) #。

所以明雙差

雙差相併減於明

二和共 =兩個虛雙差。

明雙差上加虛雙差即明

二股共。 

已知明雙差 =

(b1c1 + a1)(c1a1)(2c1a1b1);

虛雙差 =

(a1 + b1c1)2(2c1a1b1)。

明雙差上加虛雙差=

(b1c1 + a1) (c1a1) (2c1a1b1) +

(a1 + b1c1)2(2c1a1b1)

=

(a1 + b1c1)(2c1a1b1)[(c1a1) + (a1 + b1c1)]

=

(a1 + b1c1)(2c1a1b1) × b1

=

(a1 + b1c1)(2c1a1b1) #。

已知日南股﹝又稱明股﹞:b14 =

(c1a1)(b1c1 + a1)。

山東股﹝又稱

股﹞:b15 =

(c1b1)(a1c1 + b1)。

二股共,即:

(c1a1)(b1c1 + a1) +

(c1b1)(a1c1 + b1)

=

(a1 + b1c1)[(c1a1) + (c1b1)]

=

(a1 + b1c1)(2c1a1b1) #。

所以明雙差上加虛雙差 = 明

二股共。

雙差上加虛雙差即明

二勾共也。

已知

雙差 =

(c1b1)(b1 + a1c1)(2c1a1b1);

虛雙差 =

(a1 + b1c1)2(2c1a1b1)。

雙差上加虛雙差,即:

(c1b1)(b1 + a1c1)(2c1a1b1) +

(a1 + b1c1)2(2c1a1b1)

=

(b1 + a1c1)(2c1a1b1)[(c1b1) + (a1 + b1c1)]

=

(b1 + a1c1)(2c1a1b1) × a1

=

(b1 + a1c1)(2c1a1b1) #。

已知南月勾﹝又稱明勾﹞:a14 =

(c1a1)(b1c1 + a1)。

東川勾﹝又稱

勾﹞:a15 =

(c1b1)(a1c1 + b1)。

二勾共 =a14 + a15 =

(c1a1)(b1c1 + a1) +

(c1b1)(a1c1 + b1)

=

(b1c1 + a1)[(c1a1) + (c1b1)]

=

(b1 + a1c1)(2c1a1b1) #。

所以

雙差上加虛雙差 = 明

二勾共。

以下為《測圓海鏡細草》原文:

(0)

相关推荐