《測圓海鏡》﹝諸差7﹞之明雙差、 雙差等式說
《測圓海鏡》﹝諸差7﹞之明雙差、
雙差等式說
上傳書齋名:瀟湘館112 Xiāo Xiāng Guǎn 112
何世強 Ho Sai Keung
提要:《測圓海鏡》乃金‧李冶所撰,其書之“圓城圖式”含十四勾股形,連同原有之大勾股形共十五勾股形。本文著重明雙差、
雙差之相關等式及其証明。
關鍵詞:明雙差、
雙差、明差、虛黃、極雙差
《測圓海鏡》乃金‧李冶所撰,書成於 1248 年,時為南宋淳祐八年。該書卷一“圓城圖式”主要討論與十五勾股形相關之等式,本文介紹其部分等式並作出証明。
本文所引用之勾股式源自“圓城圖式”之十五勾股形,a1、b1、c1 乃最大勾股形天地乾之勾、股及弦長。故 a1、b1、c1 又稱為大勾﹝地乾﹞、大股﹝天乾﹞及大弦﹝天地﹞。
《測圓海鏡》涉及一系列之勾股恆等式,所有恆等式皆與十五勾股形有關。十五勾股形中最大者為天地乾,其三邊勾股弦分別以 a1、b1、c1 表之,其餘十四勾股形三邊勾股弦則分別以 ai、bi、ci 表之,其中 1 < i ≦ 15。但 ai、bi、ci 均可以 a1、b1、c1 表之,此乃《測圓海鏡》之精髓。注意勾股定理成立,即 ai2 + bi2 = ci2。
有關以 a1、b1、c1 表 ai、bi、ci 之式可參閱筆者另文〈《測圓海鏡》“圓城圖式”之十二勾股弦算法〉。
以下左為“圓城圖式”右為“圓城圖式十五句股形圖”。
注意圓徑為 a1 + b1 – c1,見上圖之東南西北圓。圓徑乃十五勾股形三邊重要因子之一,其他因子為最大勾股形之勾股較、勾弦較及股弘較。
本文主要談及十五勾股形有關三邊相差之等式,其中部分等式曾在“五和五較”等式中出現,可參閱筆者相關之文章。
注意等式 (c1 – b1)(c1 – a1) =
(a1 + b1 – c1)2﹝雙差積圓徑平方半等式﹞。
本文取自《測圓海鏡‧卷一‧諸差》。筆者有以下之文涉及〈諸差〉:
《測圓海鏡》之大差差、小差差等式﹝諸差1﹞
《測圓海鏡》之髙差、旁差、極雙差等式﹝諸差2﹞
《測圓海鏡》之極差等式﹝諸差3﹞
《測圓海鏡》之角差及虛差等式說﹝諸差 4﹞
《測圓海鏡》﹝諸差5﹞之髙差、黃廣及黃長等式
《測圓海鏡》﹝諸差6﹞之邊弦、底弦等式說
本文乃以上六文之延續。
以下為有關“明雙差”及“
雙差”相關之等式:
明雙差亦為明
二大差。其較則明差也。
雙差亦為明
二小差。其較則
差也。明雙差內減明差即虛黃。
雙差上加
差亦同上。以明雙差加明和即兩明弦。以
雙差加
和則兩
弦也。以明雙差減明和而半之即明黃又為虛大差。以
雙差減於
和而半之即
黃,又為虛小差也。以虛大差減明和即為明弦。以虛小差減
和即
弦也。明雙差
雙差相較則次差也。明雙差
雙差相併,加於明
二和共則為兩個極雙差。若以減於明
二和共則為兩個虛雙差也。明雙差上加虛雙差即明
二股共。
雙差上加虛雙即明
二勾共也。
以下為各條目之証明:
明雙差亦為明
二大差。
“明雙差”指明弦勾弦較與明弦股弦較之和。明弦在勾股形日月南 14。
明弦勾弦較 = c14 – a14 =
(b1 – c1 + a1) (c1 – a1)2。
明弦股弦較 = c14 – b14 =
(c1 – a1)(b1 – c1 + a1)(c1 – b1) 。
所以明雙差,即:
(b1 – c1 + a1) (c1 – a1)2 +
(c1 – a1)(b1 – c1 + a1)(c1 – b1)
=
(b1 – c1 + a1) (c1 – a1)[(c1 – a1) + (c1 – b1)]
=
(b1 – c1 + a1) (c1 – a1) (2c1 – a1 – b1) #。
明大差即明弦勾弦較 =
(b1 – c1 + a1) (c1 – a1)2。
大差即
弦上勾弦較 = c15 – a15。
c15 – a15 =
(c1 – b1)(a1 – c1 + b1) –
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)(c1 – a1)(b1 + a1 – c1)
= 明弦股弦較。
明大差+
大差
=
(b1 – c1 + a1) (c1 – a1)2 +
(c1 – b1)(c1 – a1)(b1 + a1 – c1)
=
(b1 – c1 + a1)(c1 – a1)[(c1 – a1) + (c1 – b1)]
=
(b1 – c1 + a1) (c1 – a1) (2c1 – a1 – b1) #。
所以明弦勾弦較+ 明弦股弦較 = 明大差 +
大差。
其較則明差也。
“其較”指明弦勾弦較與明弦股弦較之差,即:
(b1 – c1 + a1) (c1 – a1)2 –
(c1 – a1)(b1 – c1 + a1)(c1 – b1)
=
(b1 – c1 + a1) (c1 – a1)[(c1 – a1) – (c1 – b1)]
=
(b1 – c1 + a1) (c1 – a1)(b1 – a1) #。
“明差”指明弦勾股較。
明弦勾股較=b14 – a14=
(c1 – a1)(b1 – c1 + a1) –
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
–
]
=
(c1 – a1)(b1 – c1 + a1)(b1 – a1) #。
比較兩式可知相同,所以明雙差與明
二大差之差 = 明差。
雙差亦為明
二小差。
“
雙差”指
弦上勾弦較加
弦上股弦較。
弦上勾弦較 = c15 – a15
=
(c1 – b1)(a1 – c1 + b1) –
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)(a1 – c1 + b1)[
– 1]
=
(c1 – b1)(b1 + a1 – c1)[c1 – a1]
=
(c1 – b1)(c1 – a1)(b1 + a1 – c1) 。
弦上股弦較 = c15 – b15 。
c15 – b15=
(c1 – b1)(a1 – c1 + b1) –
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)(a1 – c1 + b1)[
– 1]
=
(c1 – b1)(a1 – c1 + b1)(c1 – b1)
=
(c1 – b1)2(a1 – c1 + b1) 。
弦上雙差
=
(c1 – b1)(c1 – a1)(b1 + a1 – c1) +
(c1 – b1)2(a1 – c1 + b1)
=
(c1 – b1)(b1 + a1 – c1)[(c1 – a1) + (c1 – b1)]
=
(c1 – b1)(b1 + a1 – c1)(2c1 – a1 – b1) #。
明小差即明弦股弦較 = c14 – b14 。
c14 – b14=
(c1 – a1)(b1 – c1 + a1) –
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
– 1]
=
(c1 – a1)(b1 – c1 + a1)(c1 – b1) 。
“
小差”指
弦上股弦較 = c15 – b15 。
c15 – b15=
(c1 – b1)(a1 – c1 + b1) –
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)(a1 – c1 + b1)[
– 1]
=
(c1 – b1)(a1 – c1 + b1)(c1 – b1)
=
(c1 – b1)2(a1 – c1 + b1) 。
明小差 +
小差,即:
(c1 – a1)(b1 – c1 + a1)(c1 – b1) +
(c1 – b1)2(a1 – c1 + b1)
=
(b1 – c1 + a1)(c1 – b1)[(c1 – a1) + (c1 – b1)]
=
(b1 – c1 + a1)(c1 – b1)(2c1 – a1 – b1) #。
比較兩式可知相同,所以
雙差 = 明
二小差。
其較則
差也。
“其較”指
雙差之較 =
勾弦較 –
股弦較
= (c15 – a15) – (c15 – b15)
= c15 – a15 – c15 + b15
= b15 – a15。
以上即
差,即
弦上勾股較。
弦上勾股較 = b15 – a15
=
(c1 – b1)(a1 – c1 + b1) –
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)(a1 – c1 + b1)(
–
)
=
(c1 – b1)(a1 – c1 + b1)(b1 – a1) #。
明雙差內減明差即虛黃。
明雙差= 明弦股弦較 + 明弦勾弦較 = (c14 – b14) + (c14 – a14);
明差= b14 – a14;
明雙差內減明差即(c14 – b14) + (c14 – a14)– (b14 – a14)
= c14 – b14 + c14– a14 – b14 + a14
= 2(c14 – b14)
= 2 ×
(c1 – a1)(b1 – c1 + a1)(c1 – b1) ﹝見前條﹞
=
(c1 – a1)(b1 – c1 + a1)(c1 – b1) 。
“虛黃”即太虛弦三事較 = 弦和較 = b13 + a13 – c13。
– c13 + b13 + a13
= –
(c1 – b1)(c1 – a1) +
(c1 – b1)(c1 – a1) +
(c1 – b1)(c1 – a1)
=
(c1 – b1)(c1 – a1)(– c1 + b1 + a1)
=
(a1 + b1 – c1)2(– c1 + b1 + a1) ﹝雙差積圓徑平方半等式﹞。
所以明雙差內減明差 = 虛黃。
雙差上加
差亦同上。
雙差上加
差 =
勾弦較 +
股弦較 +
勾股較
= (c15 – a15) + (c15 – b15) + (b15 – a15)
= c15 – a15 +c15 – b15 + b15 – a15
= 2(c15 – a15)
= 2 ×
(c1 – b1)(c1 – a1)(b1 + a1 – c1)﹝見前條﹞
=
(c1 – b1)(c1 – a1)(b1 + a1 – c1)。
此式同上。
以明雙差加明和即兩明弦。
已知明弦﹝在勾股形日月南 14﹞勾弦較=c14 – a14。
c14 – a14 =
(c1 – a1)(b1 – c1 + a1) –
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
– 1]
=
(b1 – c1 + a1)(c1 – a1)(c1 – a1)
=
(b1 – c1 + a1) (c1 – a1)2。
明弦股弦較 = c14 – b14
=
(c1 – a1)(b1 – c1 + a1) –
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
– 1]
=
(c1 – a1)(b1 – c1 + a1)(c1 – b1) 。
所以明雙差
=
(b1 – c1 + a1) (c1 – a1)2 +
(c1 – a1)(b1 – c1 + a1)(c1 – b1)
=
(b1 – c1 + a1) (c1 – a1)[(c1 – a1) + (c1 – b1)]
=
(b1 – c1 + a1) (c1 – a1)(2c1 – a1 – b1)。
已知“明和”即明弦勾股和。
明弦勾股和=b14 + a14 =
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
+
]
=
(c1 – a1)(b1 – c1 + a1)(a1 + b1) 。
明雙差加明和
=
(c1 – a1)(b1 – c1 + a1)(a1 + b1) +
(b1 – c1 + a1)(c1 – a1)(2c1 – a1 – b1)
=
(b1 – c1 + a1)(c1 – a1)[(a1 + b1) + (2c1 – a1 – b1)]
=
(b1 – c1 + a1)(c1 – a1) × 2c1
=
(c1 – a1)(b1 – c1 + a1)。
已知明弦 = c14 =
(c1 – a1)(b1 – c1 + a1)。
兩明弦 =
(c1 – a1)(b1 – c1 + a1)。
所以以明雙差加明和 = 兩明弦。
另法:
明雙差+ 明和 = 明弦勾弦較 + 明弦股弦較 + 明弦勾股和
= (c14 – a14) + (c14 –b14) + (a14 + b14)
= c14 – a14 +c14 – b14+ a14 + b14
= 2c14。
以上即為兩明弦。
以
雙差加
和則兩
弦也。
雙差 +
和 =
弦勾弦較 +
弦股弦較 +
弦勾股和
= (c15 – a15) + (c15 – b15) + (a15 + b15)
= c15 – a15 +c15 – b15+ a15 + b15
= 2c15。
以上即為兩
弦。其實以上之形式任何勾股形皆適用。
以明雙差減明和而半之即明黃,又為虛大差。
以明雙差減明和而半之
=
(明和 – 明雙差) =
[明和 – (明弦勾弦較+ 明弦股弦較)]
=
{(a14+ b14)– [(c14 – a14) + (c14 – b14)]}
=
[a14 + b14 – (c14 – a14) – (c14 – b14)]
=
(a14 + b14 – c14 + a14– c14 + b14)
= a14 + b14– c14。
以上即為明黃,或稱之為明黃方,又名明弦三事較,又名明弦弦和較。
明弦三事較 = 弦和較 =b14 + a14 – c14。
b14 + a14 – c14
= –
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[ –
+
+
]
=
(c1 – a1)(b1 – c1 + a1)( – c1 + b1 + a1)
=
(c1 – a1)(b1 – c1 + a1)2
=
(c1 – a1)(c1 – b1)(c1 – a1)
=
(c1 – b1)(c1 – a1)2 #。
“虛大差”即太虛勾弦較。
太虛勾弦較=c13 – a13=
(c1 – b1)(c1 – a1) –
(c1 – b1)(c1 – a1)
=
(c1 – b1)(c1 – a1)[
– 1]
=
(c1 – b1)(c1 – a1)(c1 – a1)
=
(c1 – b1)(c1 – a1)2 #。
所以以明雙差減明和而半之 = 明黃 = 虛大差。
以
雙差減於
和而半之即
黃,又為虛小差也。
以
雙差減
和而半之,即:
(
和 –
雙差) =
[
和 – (
弦勾弦較 +
弦股弦較)]
=
{(a15+ b15)– [(c15 – a15) + (c15 – b15)]}
=
[a15 + b15 – (c15 – a15) – (c15 – b15)]
=
(a15 + b15 – c15 + a15– c15 + b15)
= a15 + b15– c15。
以上即為
黃。
黃即
弦三事較
弦上三事較即
弦上弦和較 = (b15 + a15) – c15 = b15 + a15 – c15。
b15 + a15 – c15
= –
(c1 – b1)(a1 – c1 + b1) +
(c1 – b1)(a1 – c1 + b1)
+
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)(a1 – c1 + b1)[ –
+
+
]
=
(c1 – b1)(a1 – c1 + b1)( – c1 + b1 + a1)
=
(c1 – b1)(a1 – c1 + b1)2
=
(c1 – a1)(c1 – b1)(c1 – b1) ﹝雙差積圓徑平方半等式﹞
=
(c1 – b1)2(c1 – a1) #。
虛小差即太虛股弦較
太虛股弦較= c13 – b13 =
(c1 – b1)(c1 – a1) –
(c1 – b1)(c1 – a1)
=
(c1 – b1)(c1 – a1)[
– 1]
=
(c1 – a1)(c1 – b1)(c1 – b1)
=
(c1 – a1)(c1 – b1)2 #。
比較兩式,可知
弦上三事較 = 太虛上股弦較。
以虛大差減明和即為明弦。
已知虛大差即太虛勾弦較,明和即明弦勾股和。
明弦勾股和=b14 + a14 =
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
+
]
=
(c1 – a1)(b1 – c1 + a1)(a1 + b1) 。
太虛勾弦較=c13 – a13=
(c1 – b1)(c1 – a1) –
(c1 – b1)(c1 – a1)
=
(c1 – b1)(c1 – a1)[
– 1]
=
(c1 – b1)(c1 – a1)(c1 – a1)
=
(b1 – c1 + a1)2(c1 – a1)。
虛大差減明和,即:
(c1 – a1)(b1 – c1 + a1)(a1 + b1) –
(b1 – c1 + a1)2(c1 – a1)
=
(c1 – a1)(b1 – c1 + a1)[(a1 + b1) – (b1 – c1 + a1)]
=
(c1 – a1)(b1 – c1 + a1)(a1 + b1 – b1 + c1 – a1)
=
(c1 – a1)(b1 – c1 + a1) × c1
=
(c1 – a1)(b1 – c1 + a1) #。
日月為明弦﹝簡稱明弦﹞:c14 =
(c1 – a1)(b1 – c1 + a1) #。
所以以虛大差減明和 = 明弦。
以虛小差減
和即
弦也。
“虛小差”指太虛股弦較。
太虛股弦較= c13 – b13 =
(c1 – b1)(c1 – a1) –
(c1 – b1)(c1 – a1)
=
(c1 – b1)(c1 – a1)[
– 1]
=
(c1 – a1)(c1 – b1)(c1 – b1)
=
(c1 – a1)(c1 – b1)2
=
(a1 – c1 + b1)2(c1 – b1) ﹝雙差積圓徑平方半等式﹞。
“
和”指
弦上勾股和 = b15 +a15 。
b15 + a15 =
(c1 – b1)(a1 – c1 + b1) +
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)(a1 – c1 + b1)(
+
)
=
(c1 – b1)(a1 – c1 + b1)(b1 + a1) 。
以虛小差減
和,即:
(c1 – b1)(a1 – c1 + b1)(b1 + a1) –
(a1 – c1 + b1)2(c1 – b1)
=
(c1 – b1)(a1 – c1 + b1)[(b1 + a1) – (a1 – c1 + b1)]
=
(c1 – b1)(a1 – c1 + b1)(b1 + a1 – a1 + c1 – b1)
=
(c1 – b1)(a1 – c1 + b1) × c1
=
(c1 – b1)(a1 – c1 + b1) #。
已知山川
弦﹝簡稱
弦﹞:c15 =
(c1 – b1)(a1 – c1 + b1) #。
所以以虛小差減
和 =
弦也。
明雙差
雙差相較則次差也。
已知明雙差 =
(b1 – c1 + a1)(c1 – a1)(2c1 – a1 – b1)。
弦上勾弦較 = c15 – a15
=
(c1 – b1)(a1 – c1 + b1) –
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)(a1 – c1 + b1)[
– 1]
=
(c1 – b1)(b1 + a1 – c1)[c1 – a1]
=
(c1 – b1)(c1 – a1)(b1 + a1 – c1) 。
弦上股弦較 = c15 – b15 。
c15 – b15=
(c1 – b1)(a1 – c1 + b1) –
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)(a1 – c1 + b1)[
– 1]
=
(c1 – b1)(a1 – c1 + b1)(c1 – b1)
=
(c1 – b1)2(a1 – c1 + b1) 。
弦上雙差,即:
(c1 – b1)(c1 – a1)(b1 + a1 – c1) +
(c1 – b1)2(a1 – c1 + b1)
=
(c1 – b1)(b1 + a1 – c1)[(c1 – a1) + (c1 – b1)]
=
(c1 – b1)(b1 + a1 – c1)(2c1 – a1 – b1)。
明雙差
雙差較,即:
(b1 – c1 + a1) (c1 – a1) (2c1 – a1 – b1) –
(c1 – b1)(b1 + a1 – c1)(2c1 – a1 – b1)
=
(b1 + a1 – c1)(2c1 – a1 – b1)[(c1 – a1) – (c1 – b1)]
=
(a1 + b1 – c1)(2c1 – a1 – b1)[c1 – a1 – c1 + b1]
=
(a1 + b1 – c1)(2c1 – a1 – b1)(b1 – a1) #。
明
二差共名次差。
明差指明勾與明股之差,明勾與明股之式見前。
明差 = b14 – a14 =
(c1 – a1)(b1 – c1 + a1) –
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)( a1 + b1 – c1)[
–
]。
差指
勾與
股之差,
勾與
股之式亦見前。
差 = b15 – a15 =
(c1 – b1)(a1 – c1 + b1) –
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)( a1 + b1 – c1) [
–
]。
二差共 = 明差 +
差
=
(c1 – a1)( a1 + b1 – c1)[
–
] +
(c1 – b1)( a1 + b1 – c1) [
–
]
=
( a1 +b1 – c1)[
–
](c1 – a1 + c1 – b1)
=
(a1 + b1 – c1)(2c1 – a1 – b1) #。
上式是為次差。故明雙差
雙差相較= 次差。
明雙差
雙差又相併,加於明
二和共,則為兩個極雙差。
明雙差
雙差共
=
(b1 – c1 + a1) (c1 – a1) (2c1 – a1 – b1) +
(c1 – b1)(b1 + a1 – c1)(2c1 – a1 – b1)
=
(b1 + a1 – c1)(2c1 – a1 – b1)[(c1 – a1) + (c1 – b1)]
=
(a1 + b1 – c1)(2c1 – a1 – b1)[c1 – a1 – b1 + c1]
=
(a1 + b1 – c1)(2c1 – a1 – b1)2。
已知明弦勾股和是為明和 = b14 + a14 。
b14 + a14 =
(c1 – a1)(b1 – c1 + a1) +
(c1 – a1)(b1 – c1 + a1)
=
(c1 – a1)(b1 – c1 + a1)[
+
]
=
(c1 – a1)(b1 – c1 + a1)(a1 + b1) 。
弦上勾股和是為
和 = b15 + a15 。
b15 + a15 =
(c1 – b1)(a1 – c1 + b1) +
(c1 – b1)(a1 – c1 + b1)
=
(c1 – b1)(a1 – c1 + b1)(
+
)
=
(c1 – b1)(a1 – c1 + b1)(b1 + a1) 。
明
二和共,即:
(c1 – a1)(b1 – c1 + a1)(a1 + b1) +
(c1 – b1)(a1 – c1 + b1)(b1 + a1)
=
(b1 – c1 + a1)(a1 + b1)[ (c1 – a1) + (c1 – b1)]
=
(b1 – c1 + a1)(a1 + b1)(2c1 – a1 – b1) 。
明雙差
雙差相並,加於明
二和共,即:
(a1 + b1 – c1)(2c1 – a1 – b1)2+
(b1 – c1 + a1)(a1 + b1)(2c1 – a1 – b1)
=
(a1 + b1 – c1)(2c1 – a1 – b1)(2c1 – a1 – b1 + a1 + b1)
=
(a1 + b1 – c1)(2c1 – a1 – b1) × 2c1
=
(a1 + b1 – c1)(2c1 – a1 – b1) #。
以下為極勾弦差及股弦差:
c12 – a12 =
(a1 + b1 – c1) –
(a1 + b1 – c1) =
(a1 + b1 – c1)[
– 1],
c12 – b12 =
(a1 + b1 – c1) –
(a1 + b1 – c1) =
(a1 + b1 – c1)[
– 1],
極雙差 = 即以上兩式之和,即:
(a1 + b1 – c1)[
– 1] +
(a1 + b1 – c1)[
– 1]
=
(a1 + b1 – c1)(c1 – a1) +
(a1 + b1 – c1)(c1 – b1)
=
(a1 + b1 – c1)(c1 – a1 + c1 – b1)
=
(a1 + b1 – c1)(2c1 – a1 – b1)。
兩個極雙差 ﹝上式乘以2﹞=
(a1 + b1 – c1)(2c1 – a1 – b1) #。
所以明雙差 +
雙差 + 明
二和共 = 兩個極雙差。
若以減於明
二和共則為兩個虛雙差也。
明雙差
雙差相併,減於明
二和共,即:
(b1 – c1 + a1)(a1 + b1)(2c1 – a1 – b1) –
(a1 + b1 – c1)(2c1 – a1 – b1)2
=
(a1 + b1 – c1)(2c1 – a1 – b1)( a1 + b1 – 2c1 + a1 + b1)
=
(a1 + b1 – c1)2(2c1 – a1 – b1) × 2
=
(a1 + b1 – c1)2(2c1 – a1 – b1) #。
“虛雙差”即太虛勾弦較與太虛股弦較之和﹝在勾股形月山泛 13﹞。
已知太虛勾弦較 = c13 – a13 =
(c1 – b1)(c1 – a1) –
(c1 – b1)(c1 – a1)
=
(c1 – b1)(c1 – a1)[
– 1]
=
(c1 – b1)(c1 – a1)(c1 – a1)
=
(c1 – b1)(c1 – a1)2。
太虛股弦較= c13 – b13 =
(c1 – b1)(c1 – a1) –
(c1 – b1)(c1 – a1)
=
(c1 – b1)(c1 – a1)[
– 1]
=
(c1 – a1)(c1 – b1)(c1 – b1)
=
(c1 – a1)(c1 – b1)2。
所以虛雙差 =
(c1 – b1)(c1 – a1)2 +
(c1 – a1)(c1 – b1)2
=
(c1 – a1)(c1 – b1)[(c1 – a1) + (c1 – b1)]
=
(c1 – a1)(c1 – b1)(2c1 – a1 – b1)
=
(a1 + b1 – c1)2(2c1 – a1 – b1)。
兩個虛雙差=
(a1 + b1 – c1)2(2c1 – a1 – b1) #。
所以明雙差
雙差相併減於明
二和共 =兩個虛雙差。
明雙差上加虛雙差即明
二股共。
已知明雙差 =
(b1 – c1 + a1)(c1 – a1)(2c1 – a1 – b1);
虛雙差 =
(a1 + b1 – c1)2(2c1 – a1 – b1)。
明雙差上加虛雙差=
(b1 – c1 + a1) (c1 – a1) (2c1 – a1 – b1) +
(a1 + b1 – c1)2(2c1 – a1 – b1)
=
(a1 + b1 – c1)(2c1 – a1 – b1)[(c1 – a1) + (a1 + b1 – c1)]
=
(a1 + b1 – c1)(2c1 – a1 – b1) × b1
=
(a1 + b1 – c1)(2c1 – a1 – b1) #。
已知日南股﹝又稱明股﹞:b14 =
(c1 – a1)(b1 – c1 + a1)。
山東股﹝又稱
股﹞:b15 =
(c1 – b1)(a1 – c1 + b1)。
明
二股共,即:
(c1 – a1)(b1 – c1 + a1) +
(c1 – b1)(a1 – c1 + b1)
=
(a1 + b1 – c1)[(c1 – a1) + (c1 – b1)]
=
(a1 + b1 – c1)(2c1 – a1 – b1) #。
所以明雙差上加虛雙差 = 明
二股共。
雙差上加虛雙差即明
二勾共也。
已知
雙差 =
(c1 – b1)(b1 + a1 – c1)(2c1 – a1 – b1);
虛雙差 =
(a1 + b1 – c1)2(2c1 – a1 – b1)。
雙差上加虛雙差,即:
(c1 – b1)(b1 + a1 – c1)(2c1 – a1 – b1) +
(a1 + b1 – c1)2(2c1 – a1 – b1)
=
(b1 + a1 – c1)(2c1 – a1 – b1)[(c1 – b1) + (a1 + b1 – c1)]
=
(b1 + a1 – c1)(2c1 – a1 – b1) × a1
=
(b1 + a1 – c1)(2c1 – a1 – b1) #。
已知南月勾﹝又稱明勾﹞:a14 =
(c1 – a1)(b1 – c1 + a1)。
東川勾﹝又稱
勾﹞:a15 =
(c1 – b1)(a1 – c1 + b1)。
明
二勾共 =a14 + a15 =
(c1 – a1)(b1 – c1 + a1) +
(c1 – b1)(a1 – c1 + b1)
=
(b1 – c1 + a1)[(c1 – a1) + (c1 – b1)]
=
(b1 + a1 – c1)(2c1 – a1 – b1) #。
所以
雙差上加虛雙差 = 明
二勾共。
以下為《測圓海鏡細草》原文: