步骤c,对于每一个个体记录,确定GFP的峰值(红色的垂直线),并选择了它们的特定潜在图并将其提交给 k 均值聚类程序(d)。基于元准则,在个体水平上选择最佳的k-means聚类解决方案。步骤e在步骤(d)中为每个受试者获得的最佳解决方案一起提交给第二次k-均值组聚类分析。元标准用5个模板地形图(微观状态类)确定了一个最佳解决方案。步骤f,将(e)中获得的模板地形图与个体脑电图记录进行拟合,并在每个时间点标记空间相关性最高的聚类图。对每个受试者使用微状态序列提取时间参数并进行统计分析。
图4:微观状态分析流水线。步骤e-f
最后,研究团队成功地证明,即使在被诊断为ASD的儿童群体中,大脑状态的动态也存在差异,而且它们与临床观察到的不同症状有关。“具体来说,我们能够将特定的症状与特定的脑电图数据联系起来,”Schaer教授补充道。“所以,我们在临床层面通过问卷调查或行为评估观察到的,实际上与特定的神经生物学损伤有关。”研究意义研究人员表示,UNIGE的研究标志着我们对 ASD 的理解向前迈出了重要一步,因为它为神经科学家提供了非常有效的方法,以可靠的指标来打破自闭症症状的巨大异质性。这项研究的特殊规模使其与众不同。再多家基金会的支持下,该团队花了几年时间才将其整合到一起。大样本量不仅意味着可以获得高度可靠的结果,,而且还提供了关于识别自闭症谱系特征差异所需的最少受试者数量的有价值的指示。参与这项研究的关键人员进行的计算表明,每个临床身份至少需要20到25个个体才能代表自闭症障碍的全部谱系,并揭示与典型大脑发育的差异。Schaer 教授对研究和治疗的未来充满热情:“这种细分将改善对儿童不同特征的诊断和表征。它还将有助于用可靠的指标评估当前和未来疗法的效果,特别是为ASD涉及的神经网络的治疗的发展指明方向。”论文详情:Bochet, A., Sperdin, H.F., Rihs, T.A. et al. Early alterations of large-scale brain networks temporal dynamics in young children with autism. Commun Biol 4, 968 (2021). https://doi.org/10.1038/s42003-021-02494-3https://medicalxpress.com/news/2021-09-autism-spectrum-path-segmentation.html