1300篇!CVPR2019接收结果公布,你中了吗?(附部分论文链接)
CVPR2019接收论文id查看链接:
http://cvpr2019.thecvf.com/files/cvpr_2019_final_accept_list.txt
今天,计算机视觉三大顶会之一CVPR2019(将于2019.6.16-6.19在美国洛杉矶举办)接收结果已经公布,一共有1300篇论文被接收,接收率为25.2%,目前组委会公布了接收的全部论文ID, 小编也看到了朋友圈的晒被接收图,如朱政团队中的CVPR2019全景分割论文Attention-guided Unified Network for Panoptic Segmentation,还有复盘笔记(可以学习学习~)
朱政CVPR2019复盘备忘录
虽然我们目前还只能看到官方公布的接收论文ID,具体的接收论文还不清楚,不过经过小编的努力,我们收集了一批论文(因为无官方通知,如有错误,欢迎指出),列表如下,大家可以先去阅读一番了。
Attention-guided Unified Network for Panoptic Segmentation
论文链接:https://arxiv.org/abs/1812.03904
Deep High-Resolution Representation Learning for Human Pose Estimation
论文链接:https://128.84.21.199/abs/1902.09212
MUREL: Multimodal Relational Reasoning for Visual Question Answering
论文链接:https://128.84.21.199/abs/1902.09487
End-to-End Multi-Task Learning with Attention
论文链接:https://arxiv.org/abs/1803.10704
SpherePHD: Applying CNNs on a Spherical PolyHeDron Representation of 360 degree Images
论文链接:https://arxiv.org/abs/1811.08196
Event-based High Dynamic Range Image and Very High Frame Rate Video Generation using Conditional Generative Adversarial Networks
论文链接:https://arxiv.org/abs/1811.08230
FEELVOS: Fast End-to-End Embedding Learning for Video Object Segmentation
论文链接:https://128.84.21.199/abs/1902.09513
An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-Based Action Recognition
论文链接:https://128.84.21.199/abs/1902.09130
Neural Task Graphs: Generalizing to Unseen Tasks from a Single Video Demonstration
论文链接:https://arxiv.org/abs/1807.03480
DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion
论文链接:https://arxiv.org/abs/1901.04780
A Neurobiological Evaluation Metric for Neural Network Model Search
论文链接:https://arxiv.org/pdf/1805.10726.pdf
The Perfect Match: 3D Point Cloud Matching with Smoothed Densities
论文链接:https://arxiv.org/abs/1811.06879
Improving the Performance of Unimodal Dynamic Hand-Gesture Recognition with Multimodal Training
链接:https://arxiv.org/abs/1812.06145
Variational Bayesian Dropout
论文链接:https://arxiv.org/abs/1811.07533
LiFF: Light Field Features in Scale and Depth
论文链接:https://arxiv.org/abs/1901.03916
Classification-Reconstruction Learning for Open-Set Recognition
论文链接:https://arxiv.org/abs/1812.04246
Weakly Supervised Deep Image Hashing through Tag Embeddings
论文链接:https://arxiv.org/abs/1806.05804
InverseRenderNet: Learning single image inverse rendering
论文链接:https://arxiv.org/abs/1811.12328
Reinforced Cross-Modal Matching and Self-Supervised Imitation Learningfor Vision-Language Navigation
论文链接:https://arxiv.org/abs/1811.10092
GANFIT: Generative Adversarial Network Fitting for High Fidelity 3D Face Reconstruction
论文链接:https://arxiv.org/abs/1902.05978
也欢迎大家在文章留言安利自己的CVPR2019论文供大家阅读,小编会把留言置顶~