专题分享----7个专题31个模型

以下是Word部分

专题一  角平分线相关问题模型

解题模型一

针对训练

1.(2016·枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为(  )

A.15°     B.17.5°         C.20°      D.22.5°

2.(2018·巴中)如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=   .

3.(2018·深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC=  .

4.(2018·济南历城区模拟)如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2018=      .

解题模型二

针对训练

5.(2018·长春)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为(  )

A.44°     B.40°      C.39°         D.38°

6.(2016·湖州)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是(  )

7.(2018·常德)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为(  )

A.6       B.5        C.4        D.3

【小结】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.

8.(2018·淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为(  )

A.4             B.6             C.            D.8

【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.

【小结】本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,详解本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想详解.

9.(2018·大庆)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=(  )

A.30°              B.35°              C.45°                D.60°

【分析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB=∠DAB,计算即可

【小结】本题考查的是角平分线的判定和性质,掌握角的平分线上的点到角的两个端点的距离相等.

10.(2018·河北)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为(  )

A.4.5                B.4             C.3              D.2

完整版:

(0)

相关推荐