太强了,用 Python 自动生成 Excel 数据报表!
所以今天就带大家来实战一波,使用Python自动化生成数据报表!
从一条条的数据中,创建出一张数据报表,得出你想要的东西,提高效率。
主要使用到pandas、xlwings以及matplotlib这几个库。
先来看一下动态的GIF,都是程序自动生成。
下面我们就来看看这个案例吧,水果蔬菜销售报表。
原始数据如下,主要有水果蔬菜名称、销售日期、销售数量、平均价格、平均成本、总收入、总成本、总利润等。
先导入相关库,使用pandas读取原始数据。
import pandas as pd
import xlwings as xw
import matplotlib.pyplot as plt
# 对齐数据
pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True)
# 读取数据
df = pd.read_csv(r'fruit_and_veg_sales.csv')
print(df)
结果如下。
一共是有1000行的销售数据。
使用xlwings库创建一个Excel工作簿,在工作簿中创建一个表,表名为fruit_and_veg_sales,然后将原始数据复制进去。
# 创建原始数据表并复制数据wb = xw.Book()sht = wb.sheets['Sheet1']sht.name = 'fruit_and_veg_sales'sht.range('A1').options(index=False).value = d
关于xlwings库的使用,小F推荐两个文档地址
中文版:
https://www.kancloud.cn/gnefnuy/xlwings-docs/1127455
英文版:
https://docs.xlwings.org/en/stable/index.html
推荐使用中文版,可以降低学习难度...
当然关于Excel的VBA操作,也可以看看微软的文档。
地址:
https://docs.microsoft.com/zh-cn/office/vba/api/overview/excel
将原始数据取过来后,再在工作簿中创建一个可视化表,即Dashboard表。
# 创建表
wb.sheets.add('Dashboard')
sht_dashboard = wb.sheets('Dashboard')
现在,我们有了一个包含两个工作表的Excel工作簿。fruit_and_veg_sales表有我们的数据,Dashboard表则是空白的。
下面使用pandas来处理数据,生成Dashboard表的数据信息。
DashBoard表的头两个表格,一个是产品的利润表格,一个是产品的销售数量表格。
使用到了pandas的数据透视表函数。
# 总利润透视表pv_total_profit = pd.pivot_table(df, index='类别', values='总利润(美元)', aggfunc='sum')print(pv_total_profit) # 销售数量透视表pv_quantity_sold = pd.pivot_table(df, index='类别', values='销售数量', aggfunc='sum')print(pv_quantity_sold)
得到数据如下。
稍后会将数据放置到Excel的表中去。
下面对月份进行分组汇总,得出每个月的销售情况。
# 查看每列的数据类型
print(df.dtypes)
df['销售日期'] = pd.to_datetime(df['销售日期'])
# 每日的数据情况
gb_date_sold = df.groupby(df['销售日期'].dt.to_period('m')).sum()[['销售数量', '总收入(美元)', '总成本(美元)', '总利润(美元)']]
gb_date_sold.index = gb_date_sold.index.to_series().astype(str)
print(gb_date_sold)
得到结果如下。
这里先对数据进行了查询,发现日期列为object,是不能进行分组汇总的。
所以使用了pd.to_datetime()对其进行了格式转换,而后根据时间进行分组汇总,得到每个月的数据情况。
最后一个groupby将为Dashboard表提供第四个数据信息。
# 总收入前8的日期数据gb_top_revenue = (df.groupby(df['销售日期']) .sum() .sort_values('总收入(美元)', ascending=False) .head(8) )[['销售数量', '总收入(美元)', '总成本(美元)', '总利润(美元)']]print(gb_top_revenue)
总收入前8的日期,得到结果如下。
现在我们有了4份数据,可以将其附加到Excel中。
# 设置背景颜色, 从A1单元格到Z1000单元格的矩形区域
sht_dashboard.range('A1:Z1000').color = (198, 224, 180)
# A、B列的列宽
sht_dashboard.range('A:B').column_width = 2.22
print(sht_dashboard.range('B2').api.font_object.properties.get())
# B2单元格, 文字内容、字体、字号、粗体、颜色、行高(主标题)
sht_dashboard.range('B2').value = '销售数据报表'
sht_dashboard.range('B2').api.font_object.name.set('黑体')
sht_dashboard.range('B2').api.font_object.font_size.set(48)
sht_dashboard.range('B2').api.font_object.bold.set(True)
sht_dashboard.range('B2').api.font_object.color.set([0, 0, 0])
sht_dashboard.range('B2').row_height = 61.2
# B2单元格到W2单元格的矩形区域, 下边框的粗细及颜色
sht_dashboard.range('B2:W2').api.get_border(which_border=9).weight.set(4)
sht_dashboard.range('B2:W2').api.get_border(which_border=9).color.set([0, 176, 80])
# 不同产品总的收益情况图表名称、字体、字号、粗体、颜色(副标题)
sht_dashboard.range('M2').value = '每种产品的收益情况'
sht_dashboard.range('M2').api.font_object.name.set('黑体')
sht_dashboard.range('M2').api.font_object.font_size.set(20)
sht_dashboard.range('M2').api.font_object.bold.set(True)
sht_dashboard.range('M2').api.font_object.color.set([0, 0, 0])
# 主标题和副标题的分割线, 粗细、颜色、线型
sht_dashboard.range('L2').api.get_border(which_border=7).weight.set(3)
sht_dashboard.range('L2').api.get_border(which_border=7).color.set([0, 176, 80])
sht_dashboard.range('L2').api.get_border(which_border=7).line_style.set(-4115)
先配置一些基本内容,比如文字,颜色背景,边框线等,如下图。
使用函数,批量生成四个表格的格式。
# 表格生成函数.def create_formatted_summary(header_cell, title, df_summary, color): ''' Parameters ---------- header_cell : Str 左上角单元格位置, 放置数据 title : Str 当前表格的标题 df_summary : DataFrame 表格的数据 color : Str 表格填充色 ''' # 可选择的表格填充色 colors = {'purple': [(112, 48, 160), (161, 98, 208)], 'blue': [(0, 112, 192), (155, 194, 230)], 'green': [(0, 176, 80), (169, 208, 142)], 'yellow': [(255, 192, 0), (255, 217, 102)]} # 设置表格标题的列宽 sht_dashboard.range(header_cell).column_width = 1.5 # 获取单元格的行列数 row, col = sht_dashboard.range(header_cell).row, sht_dashboard.range(header_cell).column # 设置表格的标题及相关信息, 如:字号、行高、向左居中对齐、颜色、粗体、表格的背景颜色等 summary_title_range = sht_dashboard.range((row, col)) summary_title_range.value = title summary_title_range.api.font_object.font_size.set(14) summary_title_range.row_height = 32.5 # 垂直对齐方式 summary_title_range.api.verticalalignment = xw.constants.HAlign.xlHAlignCenter summary_title_range.api.font_object.color.set([255, 255, 255]) summary_title_range.api.font_object.bold.set(True) sht_dashboard.range((row, col), (row, col + len(df_summary.columns) + 1)).color = colors[color][0] # Darker color # 设置表格内容、起始单元格、数据填充、字体大小、粗体、颜色填充 summary_header_range = sht_dashboard.range((row + 1, col + 1)) summary_header_range.value = df_summary summary_header_range = summary_header_range.expand('right') summary_header_range.api.font_object.font_size.set(11) summary_header_range.api.font_object.bold.set(True) sht_dashboard.range((row + 1, col), (row + 1, col + len(df_summary.columns) + 1)).color = colors[color][1] # Darker color sht_dashboard.range((row + 1, col + 1), (row + len(df_summary), col + len(df_summary.columns) + 1)).autofit() for num in range(1, len(df_summary) + 2, 2): sht_dashboard.range((row + num, col), (row + num, col + len(df_summary.columns) + 1)).color = colors[color][1] # 找到表格的最后一行 last_row = sht_dashboard.range((row + 1, col + 1)).expand('down').last_cell.row side_border_range = sht_dashboard.range((row + 1, col), (last_row, col)) # 给表格左边添加带颜色的边框 side_border_range.api.get_border(which_border=7).weight.set(3) side_border_range.api.get_border(which_border=7).color.set(colors[color][1]) side_border_range.api.get_border(which_border=7).line_style.set(-4115) # 生成4个表格create_formatted_summary('B5', '每种产品的收益情况', pv_total_profit, 'green')create_formatted_summary('B17', '每种产品的售出情况', pv_quantity_sold, 'purple')create_formatted_summary('F17', '每月的销售情况', gb_date_sold, 'blue')create_formatted_summary('F5', '每日总收入排名Top8 ', gb_top_revenue, 'yellow')
得到结果如下。
可以看到,一行行的数据经过Python的处理,变为一目了然的表格。
最后再绘制一个matplotlib图表,添加一张logo图片,并保存Excel文件。
# 中文显示
plt.rcParams['font.sans-serif']=['Songti SC']
# 使用Matplotlib绘制可视化图表, 饼图
fig, ax = plt.subplots(figsize=(6, 3))
pv_total_profit.plot(color='g', kind='bar', ax=ax)
# 添加图表到Excel
sht_dashboard.pictures.add(fig, name='ItemsChart',
left=sht_dashboard.range('M5').left,
top=sht_dashboard.range('M5').top,
update=True)
# 添加logo到Excel
logo = sht_dashboard.pictures.add(image='pie_logo.png',
name='PC_3',
left=sht_dashboard.range('J2').left,
top=sht_dashboard.range('J2').top+5,
update=True)
# 设置logo的大小
logo.width = 54
logo.height = 54
# 保存Excel文件
wb.save(rf'水果蔬菜销售报表.xlsx')
此处需设置一下中文显示,否则会显示不了中文,只有一个个方框。
得到最终的水果蔬菜销售报表。
本文的示例代码,可以在Mac+Excel2016中运行的,与Windows还是会有一些区别,API函数的调用(pywin32 or appscript)。
比如表格文字的字体设置。
# Windowssht_dashboard.range('B2').api.font.name = '黑体' # Macsht_dashboard.range('B2').api.font_object.name.set('黑体')