中考折叠类题目中的动点问题(四)等腰三角形存在性问题

注:  关注本公众号并回复“初中数学解题思路”可下载各种word版资料,持续更新中!
折叠问题是中考的热点也是难点问题,通常与动点问题结合起来,这类问题的题设通常是将某个图形按一定的条件折叠,通过分析折叠前后图形的变换,借助轴对称性质、勾股定理、全等三角形性质、相似三角形性质、三角函数等知识进行解答。此类问题立意新颖,充满着变化,要解决此类问题,除了能根据轴对称图形的性质作出要求的图形外,还要能综合利用相关数学模型及方法来解答.

类型四、折叠问题中的等腰三角形存在性问题

【典型例题】如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为_______.

【思路分析】根据△CDB′为等腰三角形,以CD为腰或底分三种情况讨论,①DB′=DC;②CB′=CD;③CB′=DB′. 对于①DB′=DC,作图方法以E为圆心BE长为半径作弧,以D为圆心CD长为半径作弧,两弧交点即为B′. 对于②CB′=CD,作图方法以E为圆心BE长为半径作弧,以C为圆心CD长为半径作弧,两弧交点即为B′. 对于③CB′=DB′,作图方法以E为圆心BE长为半径作弧,弧与CD垂直平分线的交点为B′.

【答案解析】

(0)

相关推荐