诱导多能干细胞(iPSCs)新的遗传标记物_中科博生

据中科博生研究表明,诱导多能干细胞(iPSCs)通常是通过遗传修饰细胞过表达四种基因使得它们恢复到不成熟的胚胎状态而生成。但这一程序只能在一小部分细胞中起作用。怀特黑德研究所和麻省理工学院的研究人员确定了新的遗传标记物,有可能帮助使这一过程更有效率,科学家们能够预测哪些处理细胞将成功地转变为多能干细胞。中科博生。
以往的研究是在大群细胞中观测基因表达改变,而并非所有实际上重编程的细胞,使得难于找出参与这一过程的基因。“在以往的研究中,你无法检测表达预测性多能标记物的少数细胞。这一研究真正酷的地方在于你能早期检测两个或三个表达这些重要基因的细胞,这是以前从未做到过的,”论文的主要作者之一、Jaenisch实验室的研究生Dina Faddah说。中科博生。
2007年,科学家们发现通过过表达Oct4、Sox2、c-Myc和Klf4四种基因成体干细胞可以被重新编程。然而在这些基因过表达的细胞群中只有约0.1-1%的细胞转变为多能干细胞。在新研究中,Jaenisch小组重编程了小鼠胚胎成纤维细胞并在整个过程的几个时间点检测了已知或怀疑与多能性有关的48种基因的表达。这使得他们能够比较成为以及未成为多能干细胞的细胞以及只有部分重编程的细胞之间的基因表达图谱。中科博生。
重编程的过程需要32-94天时间,一旦重编程完成,研究人员便在最终成为多能干细胞的细胞中检测了表达的基因。研究小组在最终变为多能干细胞的细胞中确定了四个很早(在重编程基因传递约6天后)就开启的基因Esrrb, Utf1, Lin28 和Dppa2,它们控制了参与多能性的其他基因的转录。中科博生。
研究人员还发现一些从前提出的多能性标志物在仅部分编程的细胞中处于活性状态,表明这些标记物将是无用的。利用新发现的标志物,“你可以消除并没有完全重编程的所有克隆,你不会想将部分重编程的iPSCs用于患者特异性治疗,”Buganim说。为了非常准确地读取细胞遗传图谱,研究人员利用称作Fluidigm的微流体系统筛查了基因,然后用可检测单链mRNA的荧光成像技术证实了他们的结果。中科博生。
不完全随机
这些研究结果还使得研究人员开发了一种基因相互作用的新模式可操控细胞朝着多能性转变。以前,人们一直认为重编程是一种随机的过程,也就是说一旦四个重编程基因过表达,它们是否激活正确的基因使得一个特异细胞具有多能性是一个机会问题。中科博生。
然而,新研究表明只有这一过程的最早阶段是随机的。一旦这些偶然事件唤醒细胞自身Sox2基因静息拷贝,基因就启动了一个决定性的信号通路导致多能性。在早期、随机阶段,有可能有许多方式可以激活Sox2,Buganim说:“不同的细胞以不同的方式激活Sox2。只有你有一个特异组合允许Sox2激活,你就处在了朝着完全重编程的道路上。”新模式还预测了可以激活Sox2的因子的6种组合。研究人员在重编程细胞中测试了这些组合,发现它们是成功的,且具有不同的效率。中科博生。
有趣的是,他们发现组合并不包含任何原始的重编程因子。研究人员现正在检测他们的新组合看看它们是否能生成更健康的iPSCs。最严格的测试包括将iPSCs注入到不能生成正常细胞的胚胎,这一胚胎具有4套而非2套染色体。如果从这些细胞形成了健康的动物,其完全是iPSCs的产物,则表明这些iPSCs与胚胎干细胞相当。大部分iPSCs注入胚胎都没有通过这一检测。
中科博生期待大家一起探讨学习!

(0)

相关推荐