甲状腺功能减退症(Hypothyroidism)的影像学表现
甲状腺功能减退症Hypothyroidism:简称甲减,是由于甲状腺激素的合成,分泌或生物效应不足而引起的一种综合征。病因较复杂,以原发性者多见,其次为垂体性者,其他均属少见。患者可能会出现四肢无力、内分泌功能减退、低血压、眩晕、肌性肌无力、体型异常、呼吸异常等症状。
甲状腺功能减退症可能是先天性的,这会导致严重的骨骼畸形和发育迟缓,也可能后天获得,这将导致相对温和的骨骼异常。获得性甲状腺功能减退可能发生在手术后或治疗后(放射性碘治疗)或可能是由于腺性萎缩,急性或慢性(桥本)甲状腺炎,浸润性疾病如淀粉样变性或淋巴瘤,某些药物治疗,碘缺乏症或垂体紊乱导致甲状腺激素激素缺乏。在儿童患者中,骨骼发育迟缓,往往伴有缺血性、不规则或碎片性远端股骨和近端胫骨骨骺(图1),类似于多发性骨骺发育不良。 牙齿发育也可能延迟。
图1a。12岁的男孩,先天性甲状腺功能减退症,身材矮小,发育迟缓。(a)右侧腕关节X线片显示只有头状骨(箭头),钩状骨(箭头)和桡骨(圆)的骨化中心。骨龄估计为1.5年。
图1b。(b)腰椎横断面显示出发育不全的椎体。 L1具有子弹状椎体(箭头)。
图1c。(c)骨盆前后位置X线照片显示髋关节髋臼变浅(实心箭头),边缘不光整。 股骨头骨骺(虚线箭头)小而分散。
图1d。(d)右膝的前后X线照片显示小而不规则的远端股骨和近端胫骨骨骺(箭头)。
图1e。(e)经过2年甲状腺激素替代治疗后获得的左手X线片显示所有腕骨骨化中心的间歇性骨化。 骨龄仍然延迟,但进展到约9年(患者年龄,14岁)。
图1f。(f)2年甲状腺激素替代治疗后,获得的右膝前后X光片显示骨骺的成熟,但胫骨和股骨可见残留不规则的改变(箭头)。 (图片由Ok-Hwa Kim,MD,Ajou大学,韩国首尔)提供。
Woltman征是指深腱反射的延迟松弛阶段,是甲状腺功能减退症的神经系统表现。
一名53岁的男性前来内分泌科诊所,有6个月的进行性全身性疲劳和对感冒的敏感性增加。在发表时,身体检查显示弥漫性扩大的甲状腺的存在和踝关节反射的延迟放松。实验室研究显示,血清促甲状腺素水平为200 mIU / L(参考范围,0.35至5.50),血清游离甲状腺素水平为0.05 ng / dl(1 pmol / L)(参考范围,每分升0.89至1.76 ng [每升11至23 pmol])。Woltman征是指深腱反射的延迟松弛阶段,是甲状腺功能减退症的神经系统表现。这种延迟的放松也可能与怀孕,神经性厌食症,糖尿病和高龄有关。患者接受甲状腺激素替代治疗,左旋甲状腺素治疗原发性甲状腺功能减退症。一个月后,血清游离甲状腺素水平增加到每分升1.23 ng(每升16 pmol),血清促甲状腺激素水平为每升20.5 mIU,)。在随后的随访中,促甲状腺素水平归一化至每升3.2mIU。
资料来源:
1. Skowrońska-Jóźwiak E, Lorenc RS. Metabolic bone disease in children: etiology and treatment options. Treat Endocrinol 2006;5(5):297–318.Crossref, Medline, Google Scholar
2. Guglielmi G, Muscarella S, Bazzocchi A. Integrated imaging approach to osteoporosis: state-of-the-art review and update. RadioGraphics 2011;31(5):1343–1364.Link, Google Scholar
3. O’Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ. The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 1996;11(7):1010–1018.Crossref, Medline, Google Scholar
4. Looker AC, Orwoll ES, Johnston CC Jr et al. Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 1997;12(11):1761–1768.Crossref, Medline, Google Scholar
5. Kanis Jon behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health care level: technical report. Sheffield, United Kingdom: World Health Organization Collaborating Centre for Metabolic Bones Diseases, University of Sheffield, 2007. University of Sheffield website. https://www.shef.ac.uk/FRAX/pdfs/WHO_Technical_Report.pdf. Accessed November 12, 2015.Google Scholar
6. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006;17(12):1726–1733.Crossref, Medline, Google Scholar
7. Kanis JA, Johnell O, Oden A et al. Long-term risk of osteoporotic fracture in Malmö. Osteoporos Int 2000;11(8):669–674.Crossref, Medline, Google Scholar
8. Melton LJ 3rd, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL. Bone density and fracture risk in men. J Bone Miner Res 1998;13(12):1915–1923.Crossref, Medline, Google Scholar
9. Melton LJ 3rd, Chrischilles EA, Cooper C, Lane AW, Riggs BL. Perspective: how many women have osteoporosis? J Bone Miner Res 1992;7(9):1005–1010.Crossref, Medline, Google Scholar
10. Riggs BL, Melton LJ 3rd. Evidence for two distinct syndromes of involutional osteoporosis. Am J Med 1983;75(6):899–901.Crossref, Medline, Google Scholar
11. Kanis JA, Glüer CC. An update on the diagnosis and assessment of osteoporosis with densitometry: Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int2000;11(3):192–202.Crossref, Medline, Google Scholar
12. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group. World Health Organ Tech Rep Ser 1994;843:1–129.Medline, Google Scholar
13. Zebaze RMD, Ghasem-Zadeh A, Bohte A et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet2010;375(9727):1729–1736.Crossref, Medline, Google Scholar
14. Albright F. Osteoporosis. Ann Intern Med 1947;27(6):861–882.Crossref, Medline, Google Scholar
15. Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology 2012;263(1):3–17.Link, Google Scholar
16. Guglielmi G, Muscarella S, Leone A, Peh WC. Imaging of metabolic bone diseases. Radiol Clin North Am2008;46(4):735–754, vi.Crossref, Medline, Google Scholar
17. Sommer OJ, Kladosek A, Weiler V, Czembirek H, Boeck M, Stiskal M. Rheumatoid arthritis: a practical guide to state-of-the-art imaging, image interpretation, and clinical implications. RadioGraphics 2005;25(2):381–398.Link, Google Scholar
18. Einhorn TA. Bone strength: the bottom line. Calcif Tissue Int 1992;51(5):333–339.Crossref, Medline, Google Scholar
19. Townsend PR, Rose RM, Radin EL. Buckling studies of single human trabeculae. J Biomech 1975;8(3-4):199–201.Crossref, Medline, Google Scholar
20. Mosekilde L, Viidik A, Mosekilde L. Correlation between the compressive strength of iliac and vertebral trabecular bone in normal individuals. Bone1985;6(5):291–295.Crossref, Medline, Google Scholar
21. Guise TA, Mundy GR. Cancer and bone. Endocr Rev 1998;19(1):18–54.Crossref, Medline, Google Scholar
22. Nawanthe S, Nguyen BP, Barzanian N, Akhlaghpour H, Bouxsein ML, Keaveny TM. Cortical and trabecular load sharing in the human femoral neck. J Biomech2015;48(5):816–822.Crossref, Medline, Google Scholar
23. Pitt MJ. Rickets and osteomalacia. In: Resnick D, ed. Diagnosis of bone and joint disorders. 4th ed. Philadelphia, Pa: Saunders, 2002; 1901–1946.Google Scholar
24. Calder AD. Radiology of osteogenesis imperfecta, rickets and other bony fragility states. Endocr Dev 2015;28:56–71.Medline, Google Scholar
25. Tiosano D, Hochberg Z. Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 2009;27(4):392–401.Crossref, Medline, Google Scholar
26. Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci U S A 2005;102(27):9637–9642.Crossref, Medline, Google Scholar
27. Whyte MP, Zhang F, Wenkert D et al. Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone 2015;75:229–239.Crossref, Medline, Google Scholar
28. Whyte MP, Greenberg CR, Salman NJet al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 2012;366(10):904–913.Crossref, Medline, Google Scholar
29. Khan A, Bilezikian J. Primary hyperparathyroidism: pathophysiology and impact on bone. CMAJ2000;163(2):184–187.Medline, Google Scholar
30. Murphey MD, Sartoris DJ, Quale JL, Pathria MN, Martin NL. Musculoskeletal manifestations of chronic renal insufficiency. RadioGraphics1993;13(2):357–379.Link, Google Scholar
31. Resnick D, Deftos LJ, Parthemore JG. Renal osteodystrophy: magnification radiography of target sites of absorption. AJR Am J Roentgenol 1981;136(4):711–714.Crossref, Medline, Google Scholar
32. Resnick D, Niwayama G. Subchondral resorption of bone in renal osteodystrophy. Radiology1976;118(2):315–321.Link, Google Scholar
33. Brown TW, Genant HK, Hattner RS, Orloff S, Potter DE. Multiple brown tumors in a patient with chronic renal failure and secondary hyperparathyroidism. AJR Am J Roentgenol 1977;128(1):131–134.Crossref, Medline, Google Scholar
34. Griffiths HJ, Ennis JT, Bailey G. Skeletal changes following renal transplantation. Radiology 1974;113(3):621–626.Link, Google Scholar
35. Mataliotakis G, Lykissas MG, Mavrodontidis AN, Kontogeorgakos VA, Beris AE. Femoral neck fractures secondary to renal osteodystrophy: literature review and treatment algorithm. J Musculoskelet Neuronal Interact2009;9(3):130–137.Medline, Google Scholar
36. Resnick D. The sclerotic vertebral body. JAMA 1983;249(13):1761–1763.Crossref, Medline, Google Scholar
37. Kuzela DC, Huffer WE, Conger JD, Winter SD, Hammond WS. Soft tissue calcification in chronic dialysis patients. Am J Pathol 1977;86(2):403–424.Medline, Google Scholar
38. Naidich JB, Karmel MI, Mossey RT, Bluestone PA, Stein HL. Osteoarthropathy of the hand and wrist in patients undergoing long-term hemodialysis. Radiology 1987;164(1):205–209.Link, Google Scholar
39. Naidich JB, Mossey RT, McHeffey-Atkinson B et al. Spondyloarthropathy from long-term hemodialysis. Radiology1988;167(3):761–764.Link, Google Scholar
40. Casey TT, Stone WJ, DiRaimondo CR et al. Tumoral amyloidosis of bone of beta 2-microglobulin origin in association with long-term hemodialysis: a new type of amyloid disease. Hum Pathol1986;17(7):731–738.Crossref, Medline, Google Scholar
41. Bardin T, Kuntz D, Zingraff J, Voisin MC, Zelmar A, Lansaman J. Synovial amyloidosis in patients undergoing long-term hemodialysis. Arthritis Rheum1985;28(9):1052–1058.Crossref, Medline, Google Scholar
42. Bardin T, Lebail-Darné JL, Zingraff J et al. Dialysis arthropathy: outcome after renal transplantation. Am J Med1995;99(3):243–248.Crossref, Medline, Google Scholar
43. Gielen JL, van Holsbeeck MT, Hauglustaine D et al. Growing bone cysts in long-term hemodialysis. Skeletal Radiol 1990;19(1):43–49.Crossref, Medline, Google Scholar
44. Mitchell DM, Regan S, Cooley MR et al. Long-term follow-up of patients with hypoparathyroidism. J Clin Endocrinol Metab 2012;97(12):4507–4514.Crossref, Medline, Google Scholar
45. Shoback D. Clinical practice: hypoparathyroidism. N Engl J Med2008;359(4):391–403.Crossref, Medline, Google Scholar
46. Moley JF, Skinner M, Gillanders WE et al. Management of the parathyroid glands during preventive thyroidectomy in patients with multiple endocrine neoplasia type 2. Ann Surg2015;262(4):641–646.Crossref, Medline, Google Scholar
47. Resnick D. Parathyroid disorders and renal osteodystrophy. In: Resnick D, ed. Diagnosis of bone and joint disorders. 4th ed. Philadelphia, Pa: Saunders, 2002; 2043–2111.Google Scholar
48. Steinberg H, Waldron BR. Idiopathic hypoparathyroidism: an analysis of fifty-two cases, including the report of a new case. Medicine (Baltimore)1952;31(2):133–154.Crossref, Medline, Google Scholar
49. Taybi H, Keele D. Hypoparathyroidism: a review of the literature and report of two cases in sisters, one with steatorrhea and intestinal pseudo-obstruction. Am J Roentgenol Radium Ther Nucl Med1962;88:432–442.Medline, Google Scholar
50. Strom L, Winberg J. Idiopathic hypoparathyroidism. Acta Paediatr1954;43(6):574–581.Crossref, Medline, Google Scholar
51. Bronsky D, Kushner DS, Dubin A, Snapper I. Idiopathic hypoparathyroidism and pseudohypoparathyroidism: case reports and review of the literature. Medicine (Baltimore) 1958;37(4):317–352.Crossref, Medline, Google Scholar
52. Resnick D. Thyroid disorders. In: Resnick D, ed. Diagnosis of bone and joint disorders. 4th ed. Philadelphia, Pa: Saunders, 2002; 2026–2042.Google Scholar
53. Hernandez RJ, Poznanski AW, Hopwood NJ. Size and skeletal maturation of the hand in children with hypothyroidism and hypopituitarism. AJR Am J Roentgenol 1979;133(3):405–408.Crossref, Medline, Google Scholar
54. Newland CJ, Swift PG, Lamont AC. Congenital hypothyroidism: correlation between radiographic appearances of the knee epiphyses and biochemical data. Postgrad Med J 1991;67(788):553–556.Crossref, Medline, Google Scholar
55. Resnick D. Scurvy. In: Diagnosis of bone and joint disorders. 4th ed. Philadelphia, Pa: Saunders, 2002; 3459–3463.Google Scholar
56. Noordin S, Baloch N, Salat MS, Rashid Memon A, Ahmad T. Skeletal manifestations of scurvy: a case report from Dubai. Case Rep Orthop2012;2012:624628. doi: 10.1155/2012/624628. Published online September 3, 2012.Medline, Google Scholar
57. Polat AV, Bekci T, Say F, Bolukbas E, Selcuk MB. Osteoskeletal manifestations of scurvy: MRI and ultrasound findings. Skeletal Radiol 2015;44(8):1161–1164.Crossref, Medline, Google Scholar