一个随机过程的爱情故事

从前有一个随机过程A,他喜欢上了另一个随机过程B。虽然他们都映到R上,他们并不定义在同一个概率空间。但概率空间都不一样的随机过程怎么能够在一起呢?
A向数学家求助。数学家说:这个容易。我把你同分布地映到B所定义的那个空间就是了。
经历种种磨难,A终于到了B所在的那个空间。但他愕然发现,他与B竟然是独立的。
A再次找到了数学家。数学家说:你看这种种随机过程,总是独立的多,不独立的少。况且不独立也未见得是好事。你看C和C+1,他们并不独立,协方差是1,但是他们虽然彼此相爱,却永远也不能在一起。
A继续恳求,数学家遍查文献,发现了一种方法叫做“耦合”。但这种方法需要双方的配合。数学家找到B说明情况,B被A的诚意打动,决定给A一个机会。数学家做了这个概率空间与其自身的乘积空间,并用卡拉西奥多里扩张定理构造了上面的概率测度结构,附带诱导了轨道空间的概率测度。A和B被写在同一个括号里,构成耦合的过程。
岁月无声,B逐渐接受了A的爱情,但由于他们不知道自己将去往何方,他们从未相遇,对此也无能为力,只能感叹造化弄人。
A对于这种长期的分隔失去了耐心,又跑去向数学家求助。数学家拿出了cdy老师的应随课本,教给了A应随的知识。A虽然看不懂某些证明,但明白了一条引理:符合一定条件的耦合过程一定会到达对角线。
A高高兴兴地回到了未知的生活,并将这条引理教给了B。虽然他们仍不知将去往何方,但他们坚信cdy老师书上的知识必将引导他们相遇。
经过了漫长的等待,在世界尽头的某一天,他们相遇了。他们没有说话,只是默默地看着对方,咀嚼着分别酿造的情丝。
这时,数学家出现了。他说道:你们仍然独立,这是我改变不了的。此后,你们也许仍将分离,但你们仍会重逢。更重要的是,从此以后,你们的分布是相同的。也就是说,你们将负担彼此共同的命运,直到永远。在此,我以cdy老师的名义祝福你们。说罢,数学家送给他们一本Durrett写的Probability:Theory and Examples (ed.4).
A与B向数学家告别,走上了仍然未知的旅途。他们仍将分离,但又会重逢。他们负担着彼此共同的命运,心贴着心,幸福地走下去,直到t趋于正无穷。
附:
三行情书
To: a girl who knows some stochastic processes
我们的人生便是随机过程
虽身不由己,但注定相遇
而一旦相遇,心就不再分离
From: a boy who knows some stochastic processes
(0)

相关推荐