古希腊演绎数学的起源
内容提要:古巴比伦的修辞代数传入古希腊后,希腊人用演绎的方式分析各个命题,并给出正确命题的证明。其中早期的代表人物有泰勒斯和毕达哥拉斯学派。古希腊人的数学思维方式,也渗透进哲学研究中,例如柏拉图的工作。
图1 泥板书
二、从修辞代数到演绎数学
三、古希腊的泰勒斯
泰勒斯(约公元前624-548年),是希腊早期的重要几何学家。通常认为,有很多几何学命题的证明归功于泰勒斯。
图2 泰勒斯
包括:1. 圆的直径将圆分成全等的两部分;2. 等腰三角形两底角相等;3. 半圆所对的圆周角是直角等。第一条命题很有趣。一种可能的证明是用反证法。假设某条直径两侧圆的部分不全等,沿着直径将圆折叠,则两侧的圆周不重合。但如此一来,必有两条半径不相等。矛盾!
在泰勒斯的时期,数学家们尝试对各种命题提供证明。每个看似显然的命题,都需要用更为清晰的方式加以分析,并提取更为基本的假设。逐渐形成系统的演绎体系。
四、毕达哥拉斯学派
图3 正方形数
图4 三角形数
毕达哥拉斯学派有“形数”的概念,例如正方形数、三角形数等,如上图。历史学家推测,他们可能利用了与形数相关的几何方法,证明了勾股定理。如下图。一个直角三角形的边长分别是b,b+d。以斜边为边长的正方形面积等于第1个图中间小正方形面积,加上四个三角形面积,于是等于。在第三个图中重新拼凑面积,可以看出它等于小正方形面积加上另一直角边长为边长的正方形面积。
图5 勾股定理的证明。
图6 根号2无理性的证明
当他们发现是无理数时,他们非常震惊,因为这与他们的信条矛盾。后来欧多克索斯提出比例理论,在一定程度上缓解了人们对无理数的困惑。
五、柏拉图与数学
图7 雅典学园
古希腊人逐渐形成演绎数学。他们从确凿无疑的假设出发,经过严谨的证明,获得关于数学、关于世界的真理,从而真正地掌握事物的本质。
参考文献
J.Gray. Ideas of space: Euclidean, non-Euclidean, and Relativistic[M].(2nd edition). Oxford: Clarendon Press. 1989.
J.Fauvel and J.Gray (eds) (1987). The history of mathematics- a reader [M]. Macmillan, London.
柏拉图. 理想国. 郭斌和, 张竹明 译. 北京: 商务印书馆. 1986.
作者简介
刘建新,科学技术史博士,信阳师范学院教师教育学院数学教师,主要研究方向为19世纪上半叶的微分几何学史与非欧几何学史。