如图,在△ABC中,D,E分别是AB,AC的中点,那么△ADE与四边形DBCE的面积之比是( )由DE∥BC,得△ADE∽△ABC且相似比为1:2,从而得面积比为1:4,则可推出△ADE与四边形DBCE的面积之比.相似三角形在初中数学当中,一直是非常重要的知识板块,很多疑难压轴题,只要用好相似这一块知识内容,都能顺利解决问题。我们知道,要确定两三角形是否相似,除了图形位置要确定,对应边确定或对应角确定时,更需要把对应点的字母写在对应的位置。若由于对应关系不确定,相关的问题往往就会有多解可能,常常需要我们进行分类讨论,如以相似三角形中对应关系不确定为背景的压轴题一直是中考数学的热点和难点。相似图形一直是现实生活中广泛存在的现象,在很多领域都需要用到相似这一块知识内容。因此,探索并证明相似图形的一些重要性质,不仅可以使学生更好地认识、描述物体的形状,体会、理解图形的相似在刻画现实世界中的作用、意义,而且还可以通过解决现实世界中的具体问题,提高学生应用数学知识的能力。
▷▷▷▷▷点我领取学习资料◁◁◁◁◁
您也可以登陆学习平台↓
第一中考(www.diyizhongkao.com)
↓点击原文,获取更多学习资料