“PA k·PB”型的最值问题:胡不归与阿氏圆
【问题背景】
“PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理。
而当k取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。
此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。即点P在直线上运动和点P在圆上运动;其中点P在直线上运动的类型称之为“胡不归”问题。
点P在圆周上运动的类型称之为“阿氏圆”问题。
本文将分别从这两类入手与大家共同探究线段最值问题的解决方案。
【知识储备】
线段最值问题常用原理:
①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;
②两点间线段最短;
③连结直线外一点和直线上各点的所有线段中,垂线段最短
相关推荐
-
“将军饮马”模型及其各类归纳
将军饮马"问题是指动点在直线上运动,线段和差的一类最值问题,往往通过对称进行等量代换,转化成两点之间的距离或点到直线的距离,或利用三角形两边之和大于第三边,两边之差小于第三边求得最值.解决这 ...
-
最短路径:阿氏圆(PA k•PB型)定圆型轨迹问题探究
[知识精讲] 在平面上,到线段两端距离相等的点,在线段的垂直平分线上,即对于平面内的定点A.B,若平面内有一动点P满足PA:PB=1,则P点轨迹为一条直线(即线段AB的垂直平分线),如果这个比例不为1 ...
-
专题8 “PA+k·PB”型的最值问题
(1)承蒙厚爱,先干为敬.所有课件教案均为整理版,非原题作者,若有侵权,请联系胡先森. (2)需要word版本的同学或者同行,可添加胡先森微信,注明来意,胡先森可能姗姗来迟,但不会缺席. (3)欢迎联 ...
-
初中数学几何最值问题之“胡不归”问题
[问题背景] "PA+k·PB"型的最值问题是近几年中考考查的热点更是难点.当 k 值为 1 时,即可转化为"PA+PB"之和最短问题,就可用我们常见的&quo ...
-
初中数学——最值问题——两条线段最值(非...
初中数学--最值问题--两条线段最值(非常经典,觉得有用就拿走) 1.PA+PB型.两定一动 .(将军饮马) 2.两定两动. :过河拆桥 .一定两动 3.将军饮马进阶版 三动点. 4.两条线段最值问题 ...
-
中考数学必考题型:将军饮马模型与最值问题
看这个标题,是否有种被欺骗的感觉? 将军饮马问题,这个再正常不过的初中经典模型,怎么可能没听过呢?而且作为一个中考的热点题型,基本上年年考.可是,无论基础的还是难度偏大的,每年都有一大批考生丢分. 为 ...
-
阿氏圆:我最近有点火!
我的全名叫阿波罗尼斯圆,因为我是古希腊一位名叫阿波罗尼斯的数学家发现的.他发现:已知平面上两定点A.B,则所有满足PA/PB=k(k不等于1)的点P的轨迹是一个圆, 就给我起名叫阿波罗尼斯圆,乳名阿氏 ...
-
初中数学——“PA k·PB”型的最值问...
初中数学——“PA k·PB”型的最值问...
-
【2021中考微专题】如何求两线段差最值问题
原题呈现 题 (1)如图①,点P为直线l上一个动点,点A.B是直线外同侧的两个定点,连接PAPB.AB.若AB=2,则PA-PB的最大值为______; (2)如图2,在四边形ABCD中,AB=AD, ...
-
【模型背景】“PA k·PB”型的最值问...
[模型背景]"PA+k·PB"型的最值问题是近几年中考考查的热点更是难点.当k 值为1时,即可转化为"PA+PB"之和最短问题,就可用我们常见的"饮马 ...
-
初中数学|PA k·PB型的最值问题(胡不归 阿氏圆)
初中数学|PA k·PB型的最值问题(胡不归 阿氏圆)
-
初中数学“PA k·PB”型的最值问题
[问题背景] "PA+k·PB"型的最值问题是近几年中考考查的热点更是难点.当 k 值为 1 时,即可转化为"PA+PB"之和最短问题,就可用我们常见的&quo ...
-
“PA k·PB”型的最值问题是近几年中考考查的热点更是难点
“PA k·PB”型的最值问题是近几年中考考查的热点更是难点
-
“PA+k·PB”型的最值问题(一)
春熙初中数学 25篇原创内容 公众号 初中数学解题思路 本号致力于初中数学学习的钻研和探索.全面覆盖初中数学典型题集.解题模型.动点最值.思路方法.超级易错.几何辅助线.压轴破解等方面,欢迎关注! 1 ...
-
“PA+k·PB”型的最值问题(二)
春熙初中数学 25篇原创内容 公众号 初中数学解题思路 本号致力于初中数学学习的钻研和探索.全面覆盖初中数学典型题集.解题模型.动点最值.思路方法.超级易错.几何辅助线.压轴破解等方面,欢迎关注! 1 ...