不讲武德,万字长文详解SpringBoot 操作 ElasticSearch

你知道的越多,不知道的就越多,业余的像一棵小草!

你来,我们一起精进!你不来,我和你的竞争对手一起精进!

编辑:业余草

rrd.me/gBaFy

推荐:https://www.xttblog.com/?p=5120

一、ElasticSearch 简介

1、简介

ElasticSearch 是一个基于 Lucene 的搜索服务器。它提供了一个分布式多员工能力的全文搜索引擎,基于 RESTful web 接口。Elasticsearch 是用 Java 语言开发的,并作为 Apache 许可条款下的开放源码发布,是一种流行的企业级搜索引擎。

ElasticSearch 用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

2、特性

  • 分布式的文档存储引擎

  • 分布式的搜索引擎和分析引擎

  • 分布式,支持PB级数据

3、使用场景

  • 搜索领域:如百度、谷歌,全文检索等。

  • 门户网站:访问统计、文章点赞、留言评论等。

  • 广告推广:记录员工行为数据、消费趋势、员工群体进行定制推广等。

  • 信息采集:记录应用的埋点数据、访问日志数据等,方便大数据进行分析。

二、ElasticSearch 基础概念

1、ElaticSearch 和 DB 的关系

在 Elasticsearch 中,文档归属于一种类型 type,而这些类型存在于索引 index 中,我们可以列一些简单的不同点,来类比传统关系型数据库:

  • Relational DB -> Databases -> Tables -> Rows -> Columns

  • Elasticsearch -> Indices -> Types -> Documents -> Fields

Elasticsearch 集群可以包含多个索引 indices,每一个索引可以包含多个类型 types,每一个类型包含多个文档 documents,然后每个文档包含多个字段 Fields。而在 DB 中可以有多个数据库 Databases,每个库中可以有多张表 Tables,没个表中又包含多行Rows,每行包含多列Columns。

2、索引

索引基本概念(indices):

索引是含义相同属性的文档集合,是 ElasticSearch 的一个逻辑存储,可以理解为关系型数据库中的数据库,ElasticSearch 可以把索引数据存放到一台服务器上,也可以 sharding 后存到多台服务器上,每个索引有一个或多个分片,每个分片可以有多个副本。

索引类型(index_type):

索引可以定义一个或多个类型,文档必须属于一个类型。在 ElasticSearch 中,一个索引对象可以存储多个不同用途的对象,通过索引类型可以区分单个索引中的不同对象,可以理解为关系型数据库中的表。每个索引类型可以有不同的结构,但是不同的索引类型不能为相同的属性设置不同的类型。

3、文档

文档(document):

文档是可以被索引的基本数据单位。存储在 ElasticSearch 中的主要实体叫文档 document,可以理解为关系型数据库中表的一行记录。每个文档由多个字段构成,ElasticSearch 是一个非结构化的数据库,每个文档可以有不同的字段,并且有一个唯一的标识符。

4、映射

映射(mapping):

ElasticSearch 的 Mapping 非常类似于静态语言中的数据类型:声明一个变量为 int 类型的变量,以后这个变量都只能存储 int 类型的数据。同样的,一个 number 类型的 mapping 字段只能存储 number 类型的数据。

同语言的数据类型相比,Mapping 还有一些其他的含义,Mapping 不仅告诉 ElasticSearch 一个 Field 中是什么类型的值, 它还告诉 ElasticSearch 如何索引数据以及数据是否能被搜索到。

ElaticSearch 默认是动态创建索引和索引类型的 Mapping 的。这就相当于无需定义 Solr 中的 Schema,无需指定各个字段的索引规则就可以索引文件,很方便。但有时方便就代表着不灵活。比如,ElasticSearch 默认一个字段是要做分词的,但我们有时要搜索匹配整个字段却不行。如有统计工作要记录每个城市出现的次数。对于 name 字段,若记录 new york 文本,ElasticSearch 可能会把它拆分成 new 和 york 这两个词,分别计算这个两个单词的次数,而不是我们期望的 new york。

三、SpringBoot 项目引入 ElasticSearch 依赖

下面介绍下 SpringBoot 如何通过 elasticsearch-rest-high-level-client 工具操作 ElasticSearch,这里需要说一下,为什么没有使用 Spring 家族封装的 spring-data-elasticsearch。

主要原因是灵活性和更新速度,Spring 将 ElasticSearch 过度封装,让开发者很难跟 ES 的 DSL 查询语句进行关联。再者就是更新速度,ES 的更新速度是非常快,但是 spring-data-elasticsearch 更新速度比较缓慢。

由于上面两点,所以选择了官方推出的 Java 客户端 elasticsearch-rest-high-level-client,它的代码写法跟 DSL 语句很相似,懂 ES 查询的使用其上手很快。

示例项目地址:https://github.com/my-dlq/blog-example/tree/master/springboot/springboot-elasticsearch-example

1、Maven 引入相关依赖

  • lombok:lombok 工具依赖。

  • fastjson:用于将 JSON 转换对象的依赖。

  • spring-boot-starter-web: SpringBoot 的 Web 依赖。

  • elasticsearch:ElasticSearch:依赖,需要和 ES 版本保持一致。

  • elasticsearch-rest-high-level-client:用于操作 ES 的 Java 客户端。

<?xml version='1.0' encoding='UTF-8'?>
<project xmlns='http://maven.apache.org/POM/4.0.0' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
         xsi:schemaLocation='http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd'>
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.2.4.RELEASE</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>club.mydlq</groupId>
    <artifactId>springboot-elasticsearch-example</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>springboot-elasticsearch-example</name>
    <description>Demo project for Spring Boot ElasticSearch</description>

<properties>
        <java.version>1.8</java.version>
    </properties>
    <dependencies>
        <!--web-->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <!--lombok-->
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>
        <!--fastjson-->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.61</version>
        </dependency>
        <!--elasticsearch-->
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-high-level-client</artifactId>
            <version>6.5.4</version>
        </dependency>
        <dependency>
            <groupId>org.elasticsearch</groupId>
            <artifactId>elasticsearch</artifactId>
            <version>6.5.4</version>
        </dependency>
    </dependencies>

<build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

</project>

2、ElasticSearch 连接配置

(1)、application.yml 配置文件

为了方便更改连接 ES 的连接配置,所以我们将配置信息放置于 application.yaml 中:

#baseserver:  port: 8080#springspring:  application:    name: springboot-elasticsearch-example#elasticsearchelasticsearch:  schema: http  address: 127.0.0.1:9200  connectTimeout: 5000  socketTimeout: 5000  connectionRequestTimeout: 5000  maxConnectNum: 100  maxConnectPerRoute: 100

(2)、java 连接配置类

这里需要写一个 Java 配置类读取 application 中的配置信息:

import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestClientBuilder;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import java.util.ArrayList;
import java.util.List;

/**
 * ElasticSearch 配置
 */
@Configuration
public class ElasticSearchConfig {

/** 协议 */
    @Value('${elasticsearch.schema:http}')
    private String schema;

/** 集群地址,如果有多个用“,”隔开 */
    @Value('${elasticsearch.address}')
    private String address;

/** 连接超时时间 */
    @Value('${elasticsearch.connectTimeout:5000}')
    private int connectTimeout;

/** Socket 连接超时时间 */
    @Value('${elasticsearch.socketTimeout:10000}')
    private int socketTimeout;

/** 获取连接的超时时间 */
    @Value('${elasticsearch.connectionRequestTimeout:5000}')
    private int connectionRequestTimeout;

/** 最大连接数 */
    @Value('${elasticsearch.maxConnectNum:100}')
    private int maxConnectNum;

/** 最大路由连接数 */
    @Value('${elasticsearch.maxConnectPerRoute:100}')
    private int maxConnectPerRoute;

@Bean
    public RestHighLevelClient restHighLevelClient() {
        // 拆分地址
        List<HttpHost> hostLists = new ArrayList<>();
        String[] hostList = address.split(',');
        for (String addr : hostList) {
            String host = addr.split(':')[0];
            String port = addr.split(':')[1];
            hostLists.add(new HttpHost(host, Integer.parseInt(port), schema));
        }
        // 转换成 HttpHost 数组
        HttpHost[] httpHost = hostLists.toArray(new HttpHost[]{});
        // 构建连接对象
        RestClientBuilder builder = RestClient.builder(httpHost);
        // 异步连接延时配置
        builder.setRequestConfigCallback(requestConfigBuilder -> {
            requestConfigBuilder.setConnectTimeout(connectTimeout);
            requestConfigBuilder.setSocketTimeout(socketTimeout);
            requestConfigBuilder.setConnectionRequestTimeout(connectionRequestTimeout);
            return requestConfigBuilder;
        });
        // 异步连接数配置
        builder.setHttpClientConfigCallback(httpClientBuilder -> {
            httpClientBuilder.setMaxConnTotal(maxConnectNum);
            httpClientBuilder.setMaxConnPerRoute(maxConnectPerRoute);
            return httpClientBuilder;
        });
        return new RestHighLevelClient(builder);
    }

}

四、索引操作示例

这里示例会指出通过 Kibana 的 Restful 工具操作与对应的 Java 代码操作的两个示例。扩展:某小公司RESTful、共用接口、前后端分离、接口约定的实践

1、Restful 操作示例

创建索引

创建名为 mydlq-user 的索引与对应 Mapping。

PUT /mydlq-user{  'mappings': {    'doc': {      'dynamic': true,      'properties': {        'name': {          'type': 'text',          'fields': {            'keyword': {              'type': 'keyword'            }          }        },        'address': {          'type': 'text',          'fields': {            'keyword': {              'type': 'keyword'            }          }        },        'remark': {          'type': 'text',          'fields': {            'keyword': {              'type': 'keyword'            }          }        },        'age': {          'type': 'integer'        },        'salary': {          'type': 'float'        },        'birthDate': {          'type': 'date',          'format': 'yyyy-MM-dd'        },        'createTime': {          'type': 'date'        }      }    }  }}

删除索引

删除 mydlq-user 索引。

DELETE /mydlq-user

2、Java 代码示例

import lombok.extern.slf4j.Slf4j;import org.elasticsearch.action.admin.indices.create.CreateIndexRequest;import org.elasticsearch.action.admin.indices.create.CreateIndexResponse;import org.elasticsearch.action.admin.indices.delete.DeleteIndexRequest;import org.elasticsearch.action.support.master.AcknowledgedResponse;import org.elasticsearch.client.RequestOptions;import org.elasticsearch.client.RestHighLevelClient;import org.elasticsearch.common.settings.Settings;import org.elasticsearch.common.xcontent.XContentBuilder;import org.elasticsearch.common.xcontent.XContentFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Service;import java.io.IOException;

@Slf4j@Servicepublic class IndexService2 {

    @Autowired    private RestHighLevelClient restHighLevelClient;

    /**     * 创建索引     */    public void createIndex() {        try {            // 创建 Mapping            XContentBuilder mapping = XContentFactory.jsonBuilder()                .startObject()                    .field('dynamic', true)                    .startObject('properties')                        .startObject('name')                            .field('type','text')                            .startObject('fields')                                .startObject('keyword')                                    .field('type','keyword')                                .endObject()                            .endObject()                        .endObject()                        .startObject('address')                            .field('type','text')                            .startObject('fields')                                .startObject('keyword')                                    .field('type','keyword')                                .endObject()                            .endObject()                        .endObject()                        .startObject('remark')                            .field('type','text')                            .startObject('fields')                                .startObject('keyword')                                    .field('type','keyword')                                .endObject()                            .endObject()                        .endObject()                        .startObject('age')                            .field('type','integer')                        .endObject()                        .startObject('salary')                            .field('type','float')                        .endObject()                        .startObject('birthDate')                            .field('type','date')                            .field('format', 'yyyy-MM-dd')                        .endObject()                        .startObject('createTime')                            .field('type','date')                        .endObject()                    .endObject()                .endObject();            // 创建索引配置信息,配置            Settings settings = Settings.builder()                    .put('index.number_of_shards', 1)                    .put('index.number_of_replicas', 0)                    .build();            // 新建创建索引请求对象,然后设置索引类型(ES 7.0 将不存在索引类型)和 mapping 与 index 配置            CreateIndexRequest request = new CreateIndexRequest('mydlq-user', settings);            request.mapping('doc', mapping);            // RestHighLevelClient 执行创建索引            CreateIndexResponse createIndexResponse = restHighLevelClient.indices().create(request, RequestOptions.DEFAULT);            // 判断是否创建成功            boolean isCreated = createIndexResponse.isAcknowledged();            log.info('是否创建成功:{}', isCreated);        } catch (IOException e) {            log.error('', e);        }    }

    /**     * 删除索引     */    public void deleteIndex() {        try {            // 新建删除索引请求对象            DeleteIndexRequest request = new DeleteIndexRequest('mydlq-user');            // 执行删除索引            AcknowledgedResponse acknowledgedResponse = restHighLevelClient.indices().delete(request, RequestOptions.DEFAULT);            // 判断是否删除成功            boolean siDeleted = acknowledgedResponse.isAcknowledged();            log.info('是否删除成功:{}', siDeleted);        } catch (IOException e) {            log.error('', e);        }    }

}

五、文档操作示例

1、Restful 操作示例

增加文档信息

在索引 mydlq-user 中增加一条文档信息。

POST /mydlq-user/doc
{
    'address': '北京市',
    'age': 29,
    'birthDate': '1990-01-10',
    'createTime': 1579530727699,
    'name': '张三',
    'remark': '来自北京市的张先生',
    'salary': 100
}

获取文档信息

获取 mydlq-user 的索引 id=1 的文档信息。

GET /mydlq-user/doc/1

更新文档信息

更新之前创建的 id=1 的文档信息。

PUT /mydlq-user/doc/1
{
    'address': '北京市海淀区',
    'age': 29,
    'birthDate': '1990-01-10',
    'createTime': 1579530727699,
    'name': '张三',
    'remark': '来自北京市的张先生',
    'salary': 100
}

删除文档信息

删除之前创建的 id=1 的文档信息。

DELETE /mydlq-user/doc/1

2、Java 代码示例

import club.mydlq.elasticsearch.model.entity.UserInfo;
import com.alibaba.fastjson.JSON;
import lombok.extern.slf4j.Slf4j;
import org.elasticsearch.action.delete.DeleteRequest;
import org.elasticsearch.action.delete.DeleteResponse;
import org.elasticsearch.action.get.GetRequest;
import org.elasticsearch.action.get.GetResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.action.index.IndexResponse;
import org.elasticsearch.action.update.UpdateRequest;
import org.elasticsearch.action.update.UpdateResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.xcontent.XContentType;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.io.IOException;
import java.util.Date;

@Slf4j
@Service
public class IndexService {

@Autowired
    private RestHighLevelClient restHighLevelClient;

/**
     * 增加文档信息
     */
    public void addDocument() {
        try {
            // 创建索引请求对象
            IndexRequest indexRequest = new IndexRequest('mydlq-user', 'doc', '1');
            // 创建员工信息
            UserInfo userInfo = new UserInfo();
            userInfo.setName('张三');
            userInfo.setAge(29);
            userInfo.setSalary(100.00f);
            userInfo.setAddress('北京市');
            userInfo.setRemark('来自北京市的张先生');
            userInfo.setCreateTime(new Date());
            userInfo.setBirthDate('1990-01-10');
            // 将对象转换为 byte 数组
            byte[] json = JSON.toJSONBytes(userInfo);
            // 设置文档内容
            indexRequest.source(json, XContentType.JSON);
            // 执行增加文档
            IndexResponse response = restHighLevelClient.index(indexRequest, RequestOptions.DEFAULT);
            log.info('创建状态:{}', response.status());
        } catch (Exception e) {
            log.error('', e);
        }
    }

/**
     * 获取文档信息
     */
    public void getDocument() {
        try {
            // 获取请求对象
            GetRequest getRequest = new GetRequest('mydlq-user', 'doc', '1');
            // 获取文档信息
            GetResponse getResponse = restHighLevelClient.get(getRequest, RequestOptions.DEFAULT);
            // 将 JSON 转换成对象
            if (getResponse.isExists()) {
                UserInfo userInfo = JSON.parseObject(getResponse.getSourceAsBytes(), UserInfo.class);
                log.info('员工信息:{}', userInfo);
            }
        } catch (IOException e) {
            log.error('', e);
        }
    }

/**
     * 更新文档信息
     */
    public void updateDocument() {
        try {
            // 创建索引请求对象
            UpdateRequest updateRequest = new UpdateRequest('mydlq-user', 'doc', '1');
            // 设置员工更新信息
            UserInfo userInfo = new UserInfo();
            userInfo.setSalary(200.00f);
            userInfo.setAddress('北京市海淀区');
            // 将对象转换为 byte 数组
            byte[] json = JSON.toJSONBytes(userInfo);
            // 设置更新文档内容
            updateRequest.doc(json, XContentType.JSON);
            // 执行更新文档
            UpdateResponse response = restHighLevelClient.update(updateRequest, RequestOptions.DEFAULT);
            log.info('创建状态:{}', response.status());
        } catch (Exception e) {
            log.error('', e);
        }
    }

/**
     * 删除文档信息
     */
    public void deleteDocument() {
        try {
            // 创建删除请求对象
            DeleteRequest deleteRequest = new DeleteRequest('mydlq-user', 'doc', '1');
            // 执行删除文档
            DeleteResponse response = restHighLevelClient.delete(deleteRequest, RequestOptions.DEFAULT);
            log.info('删除状态:{}', response.status());
        } catch (IOException e) {
            log.error('', e);
        }
    }

}

六、插入初始化数据

执行查询示例前,先往索引中插入一批数据:

1、单条插入

POST mydlq-user/_doc

{'name':'零零','address':'北京市丰台区','remark':'低层员工','age':29,'salary':3000,'birthDate':'1990-11-11','createTime':'2019-11-11T08:18:00.000Z'}

2、批量插入

POST _bulk

{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'刘一','address':'北京市丰台区','remark':'低层员工','age':30,'salary':3000,'birthDate':'1989-11-11','createTime':'2019-03-15T08:18:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'陈二','address':'北京市昌平区','remark':'中层员工','age':27,'salary':7900,'birthDate':'1992-01-25','createTime':'2019-11-08T11:15:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'张三','address':'北京市房山区','remark':'中层员工','age':28,'salary':8800,'birthDate':'1991-10-05','createTime':'2019-07-22T13:22:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'李四','address':'北京市大兴区','remark':'高层员工','age':26,'salary':9000,'birthDate':'1993-08-18','createTime':'2019-10-17T15:00:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'王五','address':'北京市密云区','remark':'低层员工','age':31,'salary':4800,'birthDate':'1988-07-20','createTime':'2019-05-29T09:00:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'赵六','address':'北京市通州区','remark':'中层员工','age':32,'salary':6500,'birthDate':'1987-06-02','createTime':'2019-12-10T18:00:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'孙七','address':'北京市朝阳区','remark':'中层员工','age':33,'salary':7000,'birthDate':'1986-04-15','createTime':'2019-06-06T13:00:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'周八','address':'北京市西城区','remark':'低层员工','age':32,'salary':5000,'birthDate':'1987-09-26','createTime':'2019-01-26T14:00:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'吴九','address':'北京市海淀区','remark':'高层员工','age':30,'salary':11000,'birthDate':'1989-11-25','createTime':'2019-09-07T13:34:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'郑十','address':'北京市东城区','remark':'低层员工','age':29,'salary':5000,'birthDate':'1990-12-25','createTime':'2019-03-06T12:08:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'萧十一','address':'北京市平谷区','remark':'低层员工','age':29,'salary':3300,'birthDate':'1990-11-11','createTime':'2019-03-10T08:17:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'曹十二','address':'北京市怀柔区','remark':'中层员工','age':27,'salary':6800,'birthDate':'1992-01-25','createTime':'2019-12-03T11:09:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'吴十三','address':'北京市延庆区','remark':'中层员工','age':25,'salary':7000,'birthDate':'1994-10-05','createTime':'2019-07-27T14:22:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'冯十四','address':'北京市密云区','remark':'低层员工','age':25,'salary':3000,'birthDate':'1994-08-18','createTime':'2019-04-22T15:00:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'蒋十五','address':'北京市通州区','remark':'低层员工','age':31,'salary':2800,'birthDate':'1988-07-20','createTime':'2019-06-13T10:00:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'苗十六','address':'北京市门头沟区','remark':'高层员工','age':32,'salary':11500,'birthDate':'1987-06-02','createTime':'2019-11-11T18:00:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'鲁十七','address':'北京市石景山区','remark':'高员工','age':33,'salary':9500,'birthDate':'1986-04-15','createTime':'2019-06-06T14:00:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'沈十八','address':'北京市朝阳区','remark':'中层员工','age':31,'salary':8300,'birthDate':'1988-09-26','createTime':'2019-09-25T14:00:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'吕十九','address':'北京市西城区','remark':'低层员工','age':31,'salary':4500,'birthDate':'1988-11-25','createTime':'2019-09-22T13:34:00.000Z'}
{'index':{'_index':'mydlq-user','_type':'doc'}}
{'name':'丁二十','address':'北京市东城区','remark':'低层员工','age':33,'salary':2100,'birthDate':'1986-12-25','createTime':'2019-03-07T12:08:00.000Z'}

3、查询数据

插入完成后再查询数据,查看之前插入的数据是否存在:

GET mydlq-user/_search

执行后得到下面记录:

{
  'took': 2,
  'timed_out': false,
  '_shards': {
    'total': 1,
    'successful': 1,
    'skipped': 0,
    'failed': 0
  },
  'hits': {
    'total': 20,
    'max_score': 1,
    'hits': [
      {
        '_index': 'mydlq-user',
        '_type': '_doc',
        '_id': 'BeN0BW8B7BNodGwRFTRj',
        '_score': 1,
        '_source': {
          'name': '刘一',
          'address': '北京市丰台区',
          'remark': '低层员工',
          'age': 30,
          'salary': 3000,
          'birthDate': '1989-11-11',
          'createTime': '2019-03-15T08:18:00.000Z'
        }
      },
      {
        '_index': 'mydlq-user',
        '_type': '_doc',
        '_id': 'BuN0BW8B7BNodGwRFTRj',
        '_score': 1,
        '_source': {
          'name': '陈二',
          'address': '北京市昌平区',
          'remark': '中层员工',
          'age': 27,
          'salary': 7900,
          'birthDate': '1992-01-25',
          'createTime': '2019-11-08T11:15:00.000Z'
        }
      },
      {
        '_index': 'mydlq-user',
        '_type': '_doc',
        '_id': 'B-N0BW8B7BNodGwRFTRj',
        '_score': 1,
        '_source': {
          'name': '张三',
          'address': '北京市房山区',
          'remark': '中层员工',
          'age': 28,
          'salary': 8800,
          'birthDate': '1991-10-05',
          'createTime': '2019-07-22T13:22:00.000Z'
        }
      },
      {
        '_index': 'mydlq-user',
        '_type': '_doc',
        '_id': 'CON0BW8B7BNodGwRFTRj',
        '_score': 1,
        '_source': {
          'name': '李四',
          'address': '北京市大兴区',
          'remark': '高层员工',
          'age': 26,
          'salary': 9000,
          'birthDate': '1993-08-18',
          'createTime': '2019-10-17T15:00:00.000Z'
        }
      },
      {
        '_index': 'mydlq-user',
        '_type': '_doc',
        '_id': 'CeN0BW8B7BNodGwRFTRj',
        '_score': 1,
        '_source': {
          'name': '王五',
          'address': '北京市密云区',
          'remark': '低层员工',
          'age': 31,
          'salary': 4800,
          'birthDate': '1988-07-20',
          'createTime': '2019-05-29T09:00:00.000Z'
        }
      },
      {
        '_index': 'mydlq-user',
        '_type': '_doc',
        '_id': 'CuN0BW8B7BNodGwRFTRj',
        '_score': 1,
        '_source': {
          'name': '赵六',
          'address': '北京市通州区',
          'remark': '中层员工',
          'age': 32,
          'salary': 6500,
          'birthDate': '1987-06-02',
          'createTime': '2019-12-10T18:00:00.000Z'
        }
      },
      {
        '_index': 'mydlq-user',
        '_type': '_doc',
        '_id': 'C-N0BW8B7BNodGwRFTRj',
        '_score': 1,
        '_source': {
          'name': '孙七',
          'address': '北京市朝阳区',
          'remark': '中层员工',
          'age': 33,
          'salary': 7000,
          'birthDate': '1986-04-15',
          'createTime': '2019-06-06T13:00:00.000Z'
        }
      },
      {
        '_index': 'mydlq-user',
        '_type': '_doc',
        '_id': 'DON0BW8B7BNodGwRFTRj',
        '_score': 1,
        '_source': {
          'name': '周八',
          'address': '北京市西城区',
          'remark': '低层员工',
          'age': 32,
          'salary': 5000,
          'birthDate': '1987-09-26',
          'createTime': '2019-01-26T14:00:00.000Z'
        }
      },
      {
        '_index': 'mydlq-user',
        '_type': '_doc',
        '_id': 'DeN0BW8B7BNodGwRFTRj',
        '_score': 1,
        '_source': {
          'name': '吴九',
          'address': '北京市海淀区',
          'remark': '高层员工',
          'age': 30,
          'salary': 11000,
          'birthDate': '1989-11-25',
          'createTime': '2019-09-07T13:34:00.000Z'
        }
      },
      {
        '_index': 'mydlq-user',
        '_type': '_doc',
        '_id': 'DuN0BW8B7BNodGwRFTRj',
        '_score': 1,
        '_source': {
          'name': '郑十',
          'address': '北京市东城区',
          'remark': '低层员工',
          'age': 29,
          'salary': 5000,
          'birthDate': '1990-12-25',
          'createTime': '2019-03-06T12:08:00.000Z'
        }
      }
    ]
  }
}

七、查询操作示例

1、精确查询(term)

(1)、Restful 操作示例

精确查询

精确查询,查询地址为 北京市通州区 的人员信息:

查询条件不会进行分词,但是查询内容可能会分词,导致查询不到。之前在创建索引时设置 Mapping 中 address 字段存在 keyword 字段是专门用于不分词查询的子字段。

GET mydlq-user/_search{  'query': {    'term': {      'address.keyword': {        'value': '北京市通州区'      }    }  }}

精确查询-多内容查询

精确查询,查询地址为 北京市丰台区、北京市昌平区 或 北京市大兴区 的人员信息:

GET mydlq-user/_search
{
  'query': {
    'terms': {
      'address.keyword': [
        '北京市丰台区',
        '北京市昌平区',
        '北京市大兴区'
      ]
    }
  }
}

(2)、Java 代码示例

import club.mydlq.elasticsearch.model.entity.UserInfo;import com.alibaba.fastjson.JSON;import lombok.extern.slf4j.Slf4j;import org.elasticsearch.action.search.SearchRequest;import org.elasticsearch.action.search.SearchResponse;import org.elasticsearch.client.RequestOptions;import org.elasticsearch.client.RestHighLevelClient;import org.elasticsearch.index.query.QueryBuilders;import org.elasticsearch.rest.RestStatus;import org.elasticsearch.search.SearchHit;import org.elasticsearch.search.SearchHits;import org.elasticsearch.search.builder.SearchSourceBuilder;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Service;import java.io.IOException;

@Slf4j@Servicepublic class TermQueryService {

    @Autowired    private RestHighLevelClient restHighLevelClient;

    /**     * 精确查询(查询条件不会进行分词,但是查询内容可能会分词,导致查询不到)     */    public void termQuery() {        try {            // 构建查询条件(注意:termQuery 支持多种格式查询,如 boolean、int、double、string 等,这里使用的是 string 的查询)            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.query(QueryBuilders.termQuery('address.keyword', '北京市通州区'));            // 创建查询请求对象,将查询对象配置到其中            SearchRequest searchRequest = new SearchRequest('mydlq-user');            searchRequest.source(searchSourceBuilder);            // 执行查询,然后处理响应结果            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);            // 根据状态和数据条数验证是否返回了数据            if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {                SearchHits hits = searchResponse.getHits();                for (SearchHit hit : hits) {                    // 将 JSON 转换成对象                    UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);                    // 输出查询信息                    log.info(userInfo.toString());                }            }        } catch (IOException e) {            log.error('', e);        }    }

    /**     * 多个内容在一个字段中进行查询     */    public void termsQuery() {        try {            // 构建查询条件(注意:termsQuery 支持多种格式查询,如 boolean、int、double、string 等,这里使用的是 string 的查询)            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.query(QueryBuilders.termsQuery('address.keyword', '北京市丰台区', '北京市昌平区', '北京市大兴区'));            // 创建查询请求对象,将查询对象配置到其中            SearchRequest searchRequest = new SearchRequest('mydlq-user');            searchRequest.source(searchSourceBuilder);            // 执行查询,然后处理响应结果            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);            // 根据状态和数据条数验证是否返回了数据            if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {                SearchHits hits = searchResponse.getHits();                for (SearchHit hit : hits) {                    // 将 JSON 转换成对象                    UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);                    // 输出查询信息                    log.info(userInfo.toString());                }            }        } catch (IOException e) {            log.error('', e);        }    }

}

2、匹配查询(match)

(1)、Restful 操作示例

匹配查询全部数据与分页

匹配查询符合条件的所有数据,并且设置以 salary 字段升序排序,并设置分页:

GET mydlq-user/_search
{
  'query': {
    'match_all': {}
  },
  'from': 0,
  'size': 10,
  'sort': [
    {
      'salary': {
        'order': 'asc'
      }
    }
  ]
}

匹配查询数据

匹配查询地址为 通州区 的数据:

GET mydlq-user/_search{  'query': {    'match': {      'address': '通州区'    }  }}

词语匹配查询

词语匹配进行查询,匹配 address 中为 北京市通州区 的员工信息:

GET mydlq-user/_search
{
  'query': {
    'match_phrase': {
      'address': '北京市通州区'
    }
  }
}

内容多字段查询

查询在字段 address、remark 中存在 北京 内容的员工信息:

GET mydlq-user/_search{  'query': {    'multi_match': {      'query': '北京',      'fields': ['address','remark']    }  }}

(2)、Java 代码示例

import club.mydlq.elasticsearch.model.entity.UserInfo;
import com.alibaba.fastjson.JSON;
import lombok.extern.slf4j.Slf4j;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.index.query.MatchAllQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.rest.RestStatus;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.elasticsearch.search.sort.SortOrder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.io.IOException;

@Slf4j
@Service
public class MatchQueryService {

@Autowired
    private RestHighLevelClient restHighLevelClient;

/**
     * 匹配查询符合条件的所有数据,并设置分页
     */
    public Object matchAllQuery() {
        try {
            // 构建查询条件
            MatchAllQueryBuilder matchAllQueryBuilder = QueryBuilders.matchAllQuery();
            // 创建查询源构造器
            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
            searchSourceBuilder.query(matchAllQueryBuilder);
            // 设置分页
            searchSourceBuilder.from(0);
            searchSourceBuilder.size(3);
            // 设置排序
            searchSourceBuilder.sort('salary', SortOrder.ASC);
            // 创建查询请求对象,将查询对象配置到其中
            SearchRequest searchRequest = new SearchRequest('mydlq-user');
            searchRequest.source(searchSourceBuilder);
            // 执行查询,然后处理响应结果
            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
            // 根据状态和数据条数验证是否返回了数据
            if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {
                SearchHits hits = searchResponse.getHits();
                for (SearchHit hit : hits) {
                    // 将 JSON 转换成对象
                    UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);
                    // 输出查询信息
                    log.info(userInfo.toString());
                }
            }
        } catch (IOException e) {
            log.error('', e);
        }
    }

/**
     * 匹配查询数据
     */
    public Object matchQuery() {
        try {
            // 构建查询条件
            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
            searchSourceBuilder.query(QueryBuilders.matchQuery('address', '*通州区'));
            // 创建查询请求对象,将查询对象配置到其中
            SearchRequest searchRequest = new SearchRequest('mydlq-user');
            searchRequest.source(searchSourceBuilder);
            // 执行查询,然后处理响应结果
            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
            // 根据状态和数据条数验证是否返回了数据
            if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {
                SearchHits hits = searchResponse.getHits();
                for (SearchHit hit : hits) {
                    // 将 JSON 转换成对象
                    UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);
                    // 输出查询信息
                    log.info(userInfo.toString());
                }
            }
        } catch (IOException e) {
            log.error('', e);
        }
    }

/**
     * 词语匹配查询
     */
    public Object matchPhraseQuery() {
        try {
            // 构建查询条件
            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
            searchSourceBuilder.query(QueryBuilders.matchPhraseQuery('address', '北京市通州区'));
            // 创建查询请求对象,将查询对象配置到其中
            SearchRequest searchRequest = new SearchRequest('mydlq-user');
            searchRequest.source(searchSourceBuilder);
            // 执行查询,然后处理响应结果
            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
            // 根据状态和数据条数验证是否返回了数据
            if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {
                SearchHits hits = searchResponse.getHits();
                for (SearchHit hit : hits) {
                    // 将 JSON 转换成对象
                    UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);
                    // 输出查询信息
                    log.info(userInfo.toString());
                }
            }
        } catch (IOException e) {
            log.error('', e);
        }
    }

/**
     * 内容在多字段中进行查询
     */
    public Object matchMultiQuery() {
        try {
            // 构建查询条件
            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
            searchSourceBuilder.query(QueryBuilders.multiMatchQuery('北京市', 'address', 'remark'));
            // 创建查询请求对象,将查询对象配置到其中
            SearchRequest searchRequest = new SearchRequest('mydlq-user');
            searchRequest.source(searchSourceBuilder);
            // 执行查询,然后处理响应结果
            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
            // 根据状态和数据条数验证是否返回了数据
            if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {
                SearchHits hits = searchResponse.getHits();
                for (SearchHit hit : hits) {
                    // 将 JSON 转换成对象
                    UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);
                    // 输出查询信息
                    log.info(userInfo.toString());
                }
            }
        } catch (IOException e) {
            log.error('', e);
        }
    }

}

3、模糊查询(fuzzy)

(1)、Restful 操作示例

模糊查询所有以 三 结尾的姓名

GET mydlq-user/_search{  'query': {    'fuzzy': {      'name': '三'    }  }}

(2)、Java 代码示例

import club.mydlq.elasticsearch.model.entity.UserInfo;
import com.alibaba.fastjson.JSON;
import lombok.extern.slf4j.Slf4j;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.unit.Fuzziness;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.rest.RestStatus;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.io.IOException;

@Slf4j
@Service
public class FuzzyQueryService {

@Autowired
    private RestHighLevelClient restHighLevelClient;

/**
     * 模糊查询所有以 “三” 结尾的姓名
     */
    public Object fuzzyQuery() {
        try {
            // 构建查询条件
            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
            searchSourceBuilder.query(QueryBuilders.fuzzyQuery('name', '三').fuzziness(Fuzziness.AUTO));
            // 创建查询请求对象,将查询对象配置到其中
            SearchRequest searchRequest = new SearchRequest('mydlq-user');
            searchRequest.source(searchSourceBuilder);
            // 执行查询,然后处理响应结果
            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
            // 根据状态和数据条数验证是否返回了数据
            if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {
                SearchHits hits = searchResponse.getHits();
                for (SearchHit hit : hits) {
                    // 将 JSON 转换成对象
                    UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);
                    // 输出查询信息
                    log.info(userInfo.toString());
                }
            }
        } catch (IOException e) {
            log.error('', e);
        }
    }

}

4、范围查询(range)

(1)、Restful 操作示例

查询岁数 ≥ 30 岁的员工数据:

GET /mydlq-user/_search{  'query': {    'range': {      'age': {        'gte': 30      }    }  }}

查询生日距离现在 30 年间的员工数据:

GET mydlq-user/_search
{
  'query': {
    'range': {
      'birthDate': {
        'gte': 'now-30y'
      }
    }
  }
}

(2)、Java 代码示例

import club.mydlq.elasticsearch.model.entity.UserInfo;import com.alibaba.fastjson.JSON;import lombok.extern.slf4j.Slf4j;import org.elasticsearch.action.search.SearchRequest;import org.elasticsearch.action.search.SearchResponse;import org.elasticsearch.client.RequestOptions;import org.elasticsearch.client.RestHighLevelClient;import org.elasticsearch.index.query.QueryBuilders;import org.elasticsearch.rest.RestStatus;import org.elasticsearch.search.SearchHit;import org.elasticsearch.search.SearchHits;import org.elasticsearch.search.builder.SearchSourceBuilder;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Service;import java.io.IOException;

@Slf4j@Servicepublic class RangeQueryService {

    @Autowired    private RestHighLevelClient restHighLevelClient;

    /**     * 查询岁数 ≥ 30 岁的员工数据     */    public void rangeQuery() {        try {            // 构建查询条件            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.query(QueryBuilders.rangeQuery('age').gte(30));            // 创建查询请求对象,将查询对象配置到其中            SearchRequest searchRequest = new SearchRequest('mydlq-user');            searchRequest.source(searchSourceBuilder);            // 执行查询,然后处理响应结果            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);            // 根据状态和数据条数验证是否返回了数据            if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {                SearchHits hits = searchResponse.getHits();                for (SearchHit hit : hits) {                    // 将 JSON 转换成对象                    UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);                    // 输出查询信息                    log.info(userInfo.toString());                }            }        } catch (IOException e) {            log.error('', e);        }    }

    /**     * 查询距离现在 30 年间的员工数据     * [年(y)、月(M)、星期(w)、天(d)、小时(h)、分钟(m)、秒(s)]     * 例如:     * now-1h 查询一小时内范围     * now-1d 查询一天内时间范围     * now-1y 查询最近一年内的时间范围     */    public void dateRangeQuery() {        try {            // 构建查询条件            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            // includeLower(是否包含下边界)、includeUpper(是否包含上边界)            searchSourceBuilder.query(QueryBuilders.rangeQuery('birthDate')                    .gte('now-30y').includeLower(true).includeUpper(true));            // 创建查询请求对象,将查询对象配置到其中            SearchRequest searchRequest = new SearchRequest('mydlq-user');            searchRequest.source(searchSourceBuilder);            // 执行查询,然后处理响应结果            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);            // 根据状态和数据条数验证是否返回了数据            if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {                SearchHits hits = searchResponse.getHits();                for (SearchHit hit : hits) {                    // 将 JSON 转换成对象                    UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);                    // 输出查询信息                    log.info(userInfo.toString());                }            }        } catch (IOException e) {            log.error('', e);        }    }

}

5、通配符查询(wildcard)

(1)、Restful 操作示例

查询所有以 “三” 结尾的姓名:

GET mydlq-user/_search
{
  'query': {
    'wildcard': {
      'name.keyword': {
        'value': '*三'
      }
    }
  }
}

(2)、Java 代码示例

import club.mydlq.elasticsearch.model.entity.UserInfo;import com.alibaba.fastjson.JSON;import lombok.extern.slf4j.Slf4j;import org.elasticsearch.action.search.SearchRequest;import org.elasticsearch.action.search.SearchResponse;import org.elasticsearch.client.RequestOptions;import org.elasticsearch.client.RestHighLevelClient;import org.elasticsearch.index.query.QueryBuilders;import org.elasticsearch.rest.RestStatus;import org.elasticsearch.search.SearchHit;import org.elasticsearch.search.SearchHits;import org.elasticsearch.search.builder.SearchSourceBuilder;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Service;import java.io.IOException;

@Slf4j@Servicepublic class WildcardQueryService {

    @Autowired    private RestHighLevelClient restHighLevelClient;

    /**     * 查询所有以 “三” 结尾的姓名     *     * *:表示多个字符(0个或多个字符)     * ?:表示单个字符     */    public Object wildcardQuery() {        try {            // 构建查询条件            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.query(QueryBuilders.wildcardQuery('name.keyword', '*三'));            // 创建查询请求对象,将查询对象配置到其中            SearchRequest searchRequest = new SearchRequest('mydlq-user');            searchRequest.source(searchSourceBuilder);            // 执行查询,然后处理响应结果            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);            // 根据状态和数据条数验证是否返回了数据            if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {                SearchHits hits = searchResponse.getHits();                for (SearchHit hit : hits) {                    // 将 JSON 转换成对象                    UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);                    // 输出查询信息                    log.info(userInfo.toString());                }            }        } catch (IOException e) {            log.error('', e);        }    }

}

6、布尔查询(bool)

(1)、Restful 操作示例

查询出生在 1990-1995 年期间,且地址在 北京市昌平区、北京市大兴区、北京市房山区 的员工信息:

GET /mydlq-user/_search
{
  'query': {
    'bool': {
      'filter': {
        'range': {
          'birthDate': {
            'format': 'yyyy', 
            'gte': 1990,
            'lte': 1995
          }
        }
      },
      'must': [
        {
          'terms': {
            'address.keyword': [
              '北京市昌平区',
              '北京市大兴区',
              '北京市房山区'
            ]
          }
        }
      ]
    }
  }
}

(2)、Java 代码示例

import club.mydlq.elasticsearch.model.entity.UserInfo;import com.alibaba.fastjson.JSON;import lombok.extern.slf4j.Slf4j;import org.elasticsearch.action.search.SearchRequest;import org.elasticsearch.action.search.SearchResponse;import org.elasticsearch.client.RequestOptions;import org.elasticsearch.client.RestHighLevelClient;import org.elasticsearch.index.query.BoolQueryBuilder;import org.elasticsearch.index.query.QueryBuilders;import org.elasticsearch.rest.RestStatus;import org.elasticsearch.search.SearchHit;import org.elasticsearch.search.SearchHits;import org.elasticsearch.search.builder.SearchSourceBuilder;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Service;import java.io.IOException;

@Slf4j@Servicepublic class BoolQueryService {

    @Autowired    private RestHighLevelClient restHighLevelClient;

    public Object boolQuery() {        try {            // 创建 Bool 查询构建器            BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();            // 构建查询条件            boolQueryBuilder.must(QueryBuilders.termsQuery('address.keyword', '北京市昌平区', '北京市大兴区', '北京市房山区'))                    .filter().add(QueryBuilders.rangeQuery('birthDate').format('yyyy').gte('1990').lte('1995'));            // 构建查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.query(boolQueryBuilder);            // 创建查询请求对象,将查询对象配置到其中            SearchRequest searchRequest = new SearchRequest('mydlq-user');            searchRequest.source(searchSourceBuilder);            // 执行查询,然后处理响应结果            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);            // 根据状态和数据条数验证是否返回了数据            if (RestStatus.OK.equals(searchResponse.status()) && searchResponse.getHits().totalHits > 0) {                SearchHits hits = searchResponse.getHits();                for (SearchHit hit : hits) {                    // 将 JSON 转换成对象                    UserInfo userInfo = JSON.parseObject(hit.getSourceAsString(), UserInfo.class);                    // 输出查询信息                    log.info(userInfo.toString());                }            }        }catch (IOException e){            log.error('',e);        }    }

}

八、聚合查询操作示例

1、Metric 聚合分析

(1)、Restful 操作示例

统计员工总数、工资最高值、工资最低值、工资平均工资、工资总和:

GET /mydlq-user/_search
{
  'size': 0,
  'aggs': {
    'salary_stats': {
      'stats': {
        'field': 'salary'
      }
    }
  }
}

统计员工工资最低值:

GET /mydlq-user/_search{  'size': 0,  'aggs': {    'salary_min': {      'min': {        'field': 'salary'      }    }  }}

统计员工工资最高值:

GET /mydlq-user/_search
{
  'size': 0,
  'aggs': {
    'salary_max': {
      'max': {
        'field': 'salary'
      }
    }
  }
}

统计员工工资平均值:

GET /mydlq-user/_search{  'size': 0,  'aggs': {    'salary_avg': {      'avg': {        'field': 'salary'      }    }  }}

统计员工工资总值:

GET /mydlq-user/_search
{
  'size': 0,
  'aggs': {
    'salary_sum': {
      'sum': {
        'field': 'salary'
      }
    }
  }
}

统计员工总数:

GET /mydlq-user/_search{  'size': 0,  'aggs': {    'employee_count': {      'value_count': {        'field': 'salary'      }    }  }}

统计员工工资百分位:

GET /mydlq-user/_search
{
  'size': 0,
  'aggs': {
    'salary_percentiles': {
      'percentiles': {
        'field': 'salary'
      }
    }
  }
}

(2)、Java 代码示例

import lombok.extern.slf4j.Slf4j;import org.elasticsearch.action.search.SearchRequest;import org.elasticsearch.action.search.SearchResponse;import org.elasticsearch.client.RequestOptions;import org.elasticsearch.client.RestHighLevelClient;import org.elasticsearch.rest.RestStatus;import org.elasticsearch.search.aggregations.AggregationBuilder;import org.elasticsearch.search.aggregations.AggregationBuilders;import org.elasticsearch.search.aggregations.Aggregations;import org.elasticsearch.search.aggregations.metrics.avg.ParsedAvg;import org.elasticsearch.search.aggregations.metrics.max.ParsedMax;import org.elasticsearch.search.aggregations.metrics.min.ParsedMin;import org.elasticsearch.search.aggregations.metrics.percentiles.ParsedPercentiles;import org.elasticsearch.search.aggregations.metrics.percentiles.Percentile;import org.elasticsearch.search.aggregations.metrics.stats.ParsedStats;import org.elasticsearch.search.aggregations.metrics.sum.ParsedSum;import org.elasticsearch.search.aggregations.metrics.sum.SumAggregationBuilder;import org.elasticsearch.search.aggregations.metrics.valuecount.ParsedValueCount;import org.elasticsearch.search.builder.SearchSourceBuilder;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Service;import java.io.IOException;

@Slf4j@Servicepublic class AggrMetricService {

    @Autowired    private RestHighLevelClient restHighLevelClient;

    /**     * stats 统计员工总数、员工工资最高值、员工工资最低值、员工平均工资、员工工资总和     */    public Object aggregationStats() {        String responseResult = '';        try {            // 设置聚合条件            AggregationBuilder aggr = AggregationBuilders.stats('salary_stats').field('salary');            // 查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.aggregation(aggr);            // 设置查询结果不返回,只返回聚合结果            searchSourceBuilder.size(0);            // 创建查询请求对象,将查询条件配置到其中            SearchRequest request = new SearchRequest('mydlq-user');            request.source(searchSourceBuilder);            // 执行请求            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);            // 获取响应中的聚合信息            Aggregations aggregations = response.getAggregations();            // 输出内容            if (RestStatus.OK.equals(response.status()) || aggregations != null) {                // 转换为 Stats 对象                ParsedStats aggregation = aggregations.get('salary_stats');                log.info('-------------------------------------------');                log.info('聚合信息:');                log.info('count:{}', aggregation.getCount());                log.info('avg:{}', aggregation.getAvg());                log.info('max:{}', aggregation.getMax());                log.info('min:{}', aggregation.getMin());                log.info('sum:{}', aggregation.getSum());                log.info('-------------------------------------------');            }            // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串            responseResult = response.toString();        } catch (IOException e) {            log.error('', e);        }        return responseResult;    }

    /**     * min 统计员工工资最低值     */    public Object aggregationMin() {        String responseResult = '';        try {            // 设置聚合条件            AggregationBuilder aggr = AggregationBuilders.min('salary_min').field('salary');            // 查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.aggregation(aggr);            searchSourceBuilder.size(0);            // 创建查询请求对象,将查询条件配置到其中            SearchRequest request = new SearchRequest('mydlq-user');            request.source(searchSourceBuilder);            // 执行请求            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);            // 获取响应中的聚合信息            Aggregations aggregations = response.getAggregations();            // 输出内容            if (RestStatus.OK.equals(response.status()) || aggregations != null) {                // 转换为 Min 对象                ParsedMin aggregation = aggregations.get('salary_min');                log.info('-------------------------------------------');                log.info('聚合信息:');                log.info('min:{}', aggregation.getValue());                log.info('-------------------------------------------');            }            // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串            responseResult = response.toString();        } catch (IOException e) {            log.error('', e);        }        return responseResult;    }

    /**     * max 统计员工工资最高值     */    public Object aggregationMax() {        String responseResult = '';        try {            // 设置聚合条件            AggregationBuilder aggr = AggregationBuilders.max('salary_max').field('salary');            // 查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.aggregation(aggr);            searchSourceBuilder.size(0);            // 创建查询请求对象,将查询条件配置到其中            SearchRequest request = new SearchRequest('mydlq-user');            request.source(searchSourceBuilder);            // 执行请求            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);            // 获取响应中的聚合信息            Aggregations aggregations = response.getAggregations();            // 输出内容            if (RestStatus.OK.equals(response.status()) || aggregations != null) {                // 转换为 Max 对象                ParsedMax aggregation = aggregations.get('salary_max');                log.info('-------------------------------------------');                log.info('聚合信息:');                log.info('max:{}', aggregation.getValue());                log.info('-------------------------------------------');            }            // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串            responseResult = response.toString();        } catch (IOException e) {            log.error('', e);        }        return responseResult;    }

    /**     * avg 统计员工工资平均值     */    public Object aggregationAvg() {        String responseResult = '';        try {            // 设置聚合条件            AggregationBuilder aggr = AggregationBuilders.avg('salary_avg').field('salary');            // 查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.aggregation(aggr);            searchSourceBuilder.size(0);            // 创建查询请求对象,将查询条件配置到其中            SearchRequest request = new SearchRequest('mydlq-user');            request.source(searchSourceBuilder);            // 执行请求            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);            // 获取响应中的聚合信息            Aggregations aggregations = response.getAggregations();            // 输出内容            if (RestStatus.OK.equals(response.status()) || aggregations != null) {                // 转换为 Avg 对象                ParsedAvg aggregation = aggregations.get('salary_avg');                log.info('-------------------------------------------');                log.info('聚合信息:');                log.info('avg:{}', aggregation.getValue());                log.info('-------------------------------------------');            }            // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串            responseResult = response.toString();        } catch (IOException e) {            log.error('', e);        }        return responseResult;    }

    /**     * sum 统计员工工资总值     */    public Object aggregationSum() {        String responseResult = '';        try {            // 设置聚合条件            SumAggregationBuilder aggr = AggregationBuilders.sum('salary_sum').field('salary');            // 查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.aggregation(aggr);            searchSourceBuilder.size(0);            // 创建查询请求对象,将查询条件配置到其中            SearchRequest request = new SearchRequest('mydlq-user');            request.source(searchSourceBuilder);            // 执行请求            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);            // 获取响应中的聚合信息            Aggregations aggregations = response.getAggregations();            // 输出内容            if (RestStatus.OK.equals(response.status()) || aggregations != null) {                // 转换为 Sum 对象                ParsedSum aggregation = aggregations.get('salary_sum');                log.info('-------------------------------------------');                log.info('聚合信息:');                log.info('sum:{}', String.valueOf((aggregation.getValue())));                log.info('-------------------------------------------');            }            // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串            responseResult = response.toString();        } catch (IOException e) {            log.error('', e);        }        return responseResult;    }

    /**     * count 统计员工总数     */    public Object aggregationCount() {        String responseResult = '';        try {            // 设置聚合条件            AggregationBuilder aggr = AggregationBuilders.count('employee_count').field('salary');            // 查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.aggregation(aggr);            searchSourceBuilder.size(0);            // 创建查询请求对象,将查询条件配置到其中            SearchRequest request = new SearchRequest('mydlq-user');            request.source(searchSourceBuilder);            // 执行请求            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);            // 获取响应中的聚合信息            Aggregations aggregations = response.getAggregations();            // 输出内容            if (RestStatus.OK.equals(response.status()) || aggregations != null) {                // 转换为 ValueCount 对象                ParsedValueCount aggregation = aggregations.get('employee_count');                log.info('-------------------------------------------');                log.info('聚合信息:');                log.info('count:{}', aggregation.getValue());                log.info('-------------------------------------------');            }            // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串            responseResult = response.toString();        } catch (IOException e) {            log.error('', e);        }        return responseResult;    }

    /**     * percentiles 统计员工工资百分位     */    public Object aggregationPercentiles() {        String responseResult = '';        try {            // 设置聚合条件            AggregationBuilder aggr = AggregationBuilders.percentiles('salary_percentiles').field('salary');            // 查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.aggregation(aggr);            searchSourceBuilder.size(0);            // 创建查询请求对象,将查询条件配置到其中            SearchRequest request = new SearchRequest('mydlq-user');            request.source(searchSourceBuilder);            // 执行请求            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);            // 获取响应中的聚合信息            Aggregations aggregations = response.getAggregations();            // 输出内容            if (RestStatus.OK.equals(response.status()) || aggregations != null) {                // 转换为 Percentiles 对象                ParsedPercentiles aggregation = aggregations.get('salary_percentiles');                log.info('-------------------------------------------');                log.info('聚合信息:');                for (Percentile percentile : aggregation) {                    log.info('百分位:{}:{}', percentile.getPercent(), percentile.getValue());                }                log.info('-------------------------------------------');            }            // 根据具体业务逻辑返回不同结果,这里为了方便直接将返回响应对象Json串            responseResult = response.toString();        } catch (IOException e) {            log.error('', e);        }        return responseResult;    }

}

2、Bucket 聚合分析

(1)、Restful 操作示例

按岁数进行聚合分桶,统计各个岁数员工的人数:

GET mydlq-user/_search
{
  'size': 0,
  'aggs': {
    'age_bucket': {
      'terms': {
        'field': 'age',
        'size': '10'
      }
    }
  }
}

按工资范围进行聚合分桶,统计工资在 3000-5000、5000-9000 和 9000 以上的员工信息:

GET mydlq-user/_search{  'aggs': {    'salary_range_bucket': {      'range': {        'field': 'salary',        'ranges': [          {            'key': '低级员工',             'to': 3000          },{            'key': '中级员工',            'from': 5000,            'to': 9000          },{            'key': '高级员工',            'from': 9000          }        ]      }    }  }}

按照时间范围进行分桶,统计 1985-1990 年和 1990-1995 年出生的员工信息:

GET mydlq-user/_search
{
  'size': 10,
  'aggs': {
    'date_range_bucket': {
      'date_range': {
        'field': 'birthDate',
        'format': 'yyyy', 
        'ranges': [
          {
            'key': '出生日期1985-1990的员工', 
            'from': '1985',
            'to': '1990'
          },{
            'key': '出生日期1990-1995的员工', 
            'from': '1990',
            'to': '1995'
          }
        ]
      }
    }
  }
}

按工资多少进行聚合分桶,设置统计的最小值为 0,最大值为 12000,区段间隔为 3000:

GET mydlq-user/_search{  'size': 0,  'aggs': {    'salary_histogram': {      'histogram': {        'field': 'salary',        'extended_bounds': {          'min': 0,          'max': 12000        },         'interval': 3000      }    }  }}

按出生日期进行分桶:

GET mydlq-user/_search
{
  'size': 0,
  'aggs': {
    'birthday_histogram': {
      'date_histogram': {
        'format': 'yyyy', 
        'field': 'birthDate',
        'interval': 'year'
      }
    }
  }
}

(2)、Java 代码示例

import lombok.extern.slf4j.Slf4j;import org.elasticsearch.action.search.SearchRequest;import org.elasticsearch.action.search.SearchResponse;import org.elasticsearch.client.RequestOptions;import org.elasticsearch.client.RestHighLevelClient;import org.elasticsearch.rest.RestStatus;import org.elasticsearch.search.aggregations.AggregationBuilder;import org.elasticsearch.search.aggregations.AggregationBuilders;import org.elasticsearch.search.aggregations.Aggregations;import org.elasticsearch.search.aggregations.bucket.histogram.DateHistogramInterval;import org.elasticsearch.search.aggregations.bucket.histogram.Histogram;import org.elasticsearch.search.aggregations.bucket.range.Range;import org.elasticsearch.search.aggregations.bucket.terms.Terms;import org.elasticsearch.search.builder.SearchSourceBuilder;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Service;import java.io.IOException;import java.util.List;

@Slf4j@Servicepublic class AggrBucketService {

    @Autowired    private RestHighLevelClient restHighLevelClient;

    /**     * 按岁数进行聚合分桶     */    public Object aggrBucketTerms() {        try {            AggregationBuilder aggr = AggregationBuilders.terms('age_bucket').field('age');            // 查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.size(10);            searchSourceBuilder.aggregation(aggr);            // 创建查询请求对象,将查询条件配置到其中            SearchRequest request = new SearchRequest('mydlq-user');            request.source(searchSourceBuilder);            // 执行请求            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);            // 获取响应中的聚合信息            Aggregations aggregations = response.getAggregations();            // 输出内容            if (RestStatus.OK.equals(response.status())) {                // 分桶                Terms byCompanyAggregation = aggregations.get('age_bucket');                List<? extends Terms.Bucket> buckets = byCompanyAggregation.getBuckets();                // 输出各个桶的内容                log.info('-------------------------------------------');                log.info('聚合信息:');                for (Terms.Bucket bucket : buckets) {                    log.info('桶名:{} | 总数:{}', bucket.getKeyAsString(), bucket.getDocCount());                }                log.info('-------------------------------------------');            }        } catch (IOException e) {            log.error('', e);        }    }

    /**     * 按工资范围进行聚合分桶     */    public Object aggrBucketRange() {        try {            AggregationBuilder aggr = AggregationBuilders.range('salary_range_bucket')                    .field('salary')                    .addUnboundedTo('低级员工', 3000)                    .addRange('中级员工', 5000, 9000)                    .addUnboundedFrom('高级员工', 9000);            // 查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.size(0);            searchSourceBuilder.aggregation(aggr);            // 创建查询请求对象,将查询条件配置到其中            SearchRequest request = new SearchRequest('mydlq-user');            request.source(searchSourceBuilder);            // 执行请求            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);            // 获取响应中的聚合信息            Aggregations aggregations = response.getAggregations();            // 输出内容            if (RestStatus.OK.equals(response.status())) {                // 分桶                Range byCompanyAggregation = aggregations.get('salary_range_bucket');                List<? extends Range.Bucket> buckets = byCompanyAggregation.getBuckets();                // 输出各个桶的内容                log.info('-------------------------------------------');                log.info('聚合信息:');                for (Range.Bucket bucket : buckets) {                    log.info('桶名:{} | 总数:{}', bucket.getKeyAsString(), bucket.getDocCount());                }                log.info('-------------------------------------------');            }        } catch (IOException e) {            log.error('', e);        }    }

    /**     * 按照时间范围进行分桶     */    public Object aggrBucketDateRange() {        try {            AggregationBuilder aggr = AggregationBuilders.dateRange('date_range_bucket')                    .field('birthDate')                    .format('yyyy')                    .addRange('1985-1990', '1985', '1990')                    .addRange('1990-1995', '1990', '1995');            // 查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.size(0);            searchSourceBuilder.aggregation(aggr);            // 创建查询请求对象,将查询条件配置到其中            SearchRequest request = new SearchRequest('mydlq-user');            request.source(searchSourceBuilder);            // 执行请求            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);            // 获取响应中的聚合信息            Aggregations aggregations = response.getAggregations();            // 输出内容            if (RestStatus.OK.equals(response.status())) {                // 分桶                Range byCompanyAggregation = aggregations.get('date_range_bucket');                List<? extends Range.Bucket> buckets = byCompanyAggregation.getBuckets();                // 输出各个桶的内容                log.info('-------------------------------------------');                log.info('聚合信息:');                for (Range.Bucket bucket : buckets) {                    log.info('桶名:{} | 总数:{}', bucket.getKeyAsString(), bucket.getDocCount());                }                log.info('-------------------------------------------');            }        } catch (IOException e) {            log.error('', e);        }    }

    /**     * 按工资多少进行聚合分桶     */    public Object aggrBucketHistogram() {        try {            AggregationBuilder aggr = AggregationBuilders.histogram('salary_histogram')                    .field('salary')                    .extendedBounds(0, 12000)                    .interval(3000);            // 查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.size(0);            searchSourceBuilder.aggregation(aggr);            // 创建查询请求对象,将查询条件配置到其中            SearchRequest request = new SearchRequest('mydlq-user');            request.source(searchSourceBuilder);            // 执行请求            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);            // 获取响应中的聚合信息            Aggregations aggregations = response.getAggregations();            // 输出内容            if (RestStatus.OK.equals(response.status())) {                // 分桶                Histogram byCompanyAggregation = aggregations.get('salary_histogram');                List<? extends Histogram.Bucket> buckets = byCompanyAggregation.getBuckets();                // 输出各个桶的内容                log.info('-------------------------------------------');                log.info('聚合信息:');                for (Histogram.Bucket bucket : buckets) {                    log.info('桶名:{} | 总数:{}', bucket.getKeyAsString(), bucket.getDocCount());                }                log.info('-------------------------------------------');            }        } catch (IOException e) {            log.error('', e);        }    }

    /**     * 按出生日期进行分桶     */    public Object aggrBucketDateHistogram() {        try {            AggregationBuilder aggr = AggregationBuilders.dateHistogram('birthday_histogram')                    .field('birthDate')                    .interval(1)                    .dateHistogramInterval(DateHistogramInterval.YEAR)                    .format('yyyy');            // 查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.size(0);            searchSourceBuilder.aggregation(aggr);            // 创建查询请求对象,将查询条件配置到其中            SearchRequest request = new SearchRequest('mydlq-user');            request.source(searchSourceBuilder);            // 执行请求            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);            // 获取响应中的聚合信息            Aggregations aggregations = response.getAggregations();            // 输出内容            if (RestStatus.OK.equals(response.status())) {                // 分桶                Histogram byCompanyAggregation = aggregations.get('birthday_histogram');

                List<? extends Histogram.Bucket> buckets = byCompanyAggregation.getBuckets();                // 输出各个桶的内容                log.info('-------------------------------------------');                log.info('聚合信息:');                for (Histogram.Bucket bucket : buckets) {                    log.info('桶名:{} | 总数:{}', bucket.getKeyAsString(), bucket.getDocCount());                }                log.info('-------------------------------------------');            }        } catch (IOException e) {            log.error('', e);        }    }

}

3、Metric 与 Bucket 聚合分析

(1)、Restful 操作示例

按照员工岁数分桶、然后统计每个岁数员工工资最高值:

GET mydlq-user/_search
{
  'size': 0,
  'aggs': {
    'salary_bucket': {
      'terms': {
        'field': 'age',
        'size': '10'
      },
      'aggs': {
        'salary_max_user': {
          'top_hits': {
            'size': 1,
            'sort': [
              {
                'salary': {
                  'order': 'desc'
                }
              }
            ]
          }
        }
      }
    }
  }
}

(2)、Java 代码示例

import lombok.extern.slf4j.Slf4j;import org.elasticsearch.action.search.SearchRequest;import org.elasticsearch.action.search.SearchResponse;import org.elasticsearch.client.RequestOptions;import org.elasticsearch.client.RestHighLevelClient;import org.elasticsearch.rest.RestStatus;import org.elasticsearch.search.SearchHit;import org.elasticsearch.search.aggregations.AggregationBuilder;import org.elasticsearch.search.aggregations.AggregationBuilders;import org.elasticsearch.search.aggregations.Aggregations;import org.elasticsearch.search.aggregations.bucket.terms.Terms;import org.elasticsearch.search.aggregations.metrics.tophits.ParsedTopHits;import org.elasticsearch.search.builder.SearchSourceBuilder;import org.elasticsearch.search.sort.SortOrder;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Service;import java.io.IOException;import java.util.List;

@Slf4j@Servicepublic class AggrBucketMetricService {

    @Autowired    private RestHighLevelClient restHighLevelClient;

    /**     * topHits 按岁数分桶、然后统计每个员工工资最高值     */    public Object aggregationTopHits() {        try {            AggregationBuilder testTop = AggregationBuilders.topHits('salary_max_user')                    .size(1)                    .sort('salary', SortOrder.DESC);            AggregationBuilder salaryBucket = AggregationBuilders.terms('salary_bucket')                    .field('age')                    .size(10);            salaryBucket.subAggregation(testTop);            // 查询源构建器            SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();            searchSourceBuilder.size(0);            searchSourceBuilder.aggregation(salaryBucket);            // 创建查询请求对象,将查询条件配置到其中            SearchRequest request = new SearchRequest('mydlq-user');            request.source(searchSourceBuilder);            // 执行请求            SearchResponse response = restHighLevelClient.search(request, RequestOptions.DEFAULT);            // 获取响应中的聚合信息            Aggregations aggregations = response.getAggregations();            // 输出内容            if (RestStatus.OK.equals(response.status())) {                // 分桶                Terms byCompanyAggregation = aggregations.get('salary_bucket');                List<? extends Terms.Bucket> buckets = byCompanyAggregation.getBuckets();                // 输出各个桶的内容                log.info('-------------------------------------------');                log.info('聚合信息:');                for (Terms.Bucket bucket : buckets) {                    log.info('桶名:{}', bucket.getKeyAsString());                    ParsedTopHits topHits = bucket.getAggregations().get('salary_max_user');                    for (SearchHit hit:topHits.getHits()){                        log.info(hit.getSourceAsString());                    }                }                log.info('-------------------------------------------');            }        } catch (IOException e) {            log.error('', e);        }    }

}
(0)

相关推荐