【杂谈】那些酷炫的深度学习网络图怎么画出来的?

本文我们聊聊如何才能画出炫酷高大上的神经网络图,下面是常用的几种工具。

作者&编辑 | 言有三

NN-SVG

这个工具可以非常方便的画出各种类型的图,是下面这位小哥哥开发的,来自于麻省理工学院弗兰克尔生物工程实验室, 该实验室开发可视化和机器学习工具用于分析生物数据。

github地址:https://github.com/zfrenchee

画图工具体验地址:http://alexlenail.me/NN-SVG/

可以绘制的图包括以节点形式展示的FCNN style,这个特别适合传统的全连接神经网络的绘制。

以平铺网络结构展示的LeNet style,用二维的方式,适合查看每一层featuremap的大小和通道数目。

以三维block形式展现的AlexNet style,可以更加真实地展示卷积过程中高维数据的尺度的变化,目前只支持卷积层和全连接层。

这个工具可以导出非常高清的SVG图,值得体验。

2 PlotNeuralNet

这个工具是萨尔大学计算机科学专业的一个学生开发的,一看就像计算机学院的嘛。

首先我们看看效果,其github链接如下,将近4000 star:

https://github.com/HarisIqbal88/PlotNeuralNet

看看人家这个fcn-8的可视化图,颜值奇高。

使用的门槛相对来说就高一些了,用LaTex语言编辑,所以可以发挥的空间就大了,你看下面这个softmax层,这就是会写代码的优势了。

其中的一部分代码是这样的,会写吗。

\pic[shift={(0,0,0)}] at (0,0,0) {Box={name=crp1,caption=SoftmaxLoss: $E_\mathcal{S}$ ,%

fill={rgb:blue,1.5;red,3.5;green,3.5;white,5},opacity=0.5,height=20,width=7,depth=20}};

相似的工具还有:https://github.com/jettan/tikz_cnn

ConvNetDraw

ConvNetDraw是一个使用配置命令的CNN神经网络画图工具,开发者是香港的一位程序员,Cédric cbovar。

采用如下的语法直接配置网络,可以简单调整x,y,z等3个维度,github链接如下:

https://cbovar.github.io/ConvNetDraw/

使用方法如上图所示,只需输入模型结构中各层的参数配置。

挺好用的不过它目标分辨率太低了,放大之后不清晰,达不到印刷的需求。

4 Draw_Convnet

这一个工具名叫draw_convnet,由Borealis公司的员工Gavin Weiguang Ding提供。

简单直接,是纯用python代码画图的,

https://github.com/gwding/draw_convnet

看看画的图如下,核心工具是matplotlib,图不酷炫,但是好在规规矩矩,可以严格控制,论文用挺合适的。

类似的工具还有:https://github.com/yu4u/convnet-drawer

5 Netscope

下面要说的是这个,我最常用的,caffe的网络结构可视化工具,大名鼎鼎的netscope,由斯坦福AILab的Saumitro Dasgupta开发,找不到照片就不放了,地址如下:

https://github.com/ethereon/netscope

左边放配置文件,右边出图,非常方便进行网络参数的调整和可视化。这种方式好就好在各个网络层之间的连接非常的方便。

其他

再分享一个有意思的,不是画什么正经图,但是把权重都画出来了。

http://scs.ryerson.ca/~aharley/vis/conv/

看了这么多,有人已经在偷偷笑了,上PPT呀,想要什么有什么,想怎么画就怎么画。

不过妹子呢?
怎么不来开发一个粉色系的可视化工具呢?
类似于这样的

第一次插个广告?

总结

那么,你都用什么画呢?欢迎留言分享一下!

《有三AI知识星球》组建了,从下周开始,会在里面随时分享更多好用,好玩的知识噢,已经先后有国内各大互联网公司的大咖加入,还有很多优秀的自媒体个人,相信大家都认识的就不做过多介绍了。

另外想加入季划的抓紧了,开始进入深度学习篇,准备全力发车了

重新解释“季”划 & 为什么我不是在搞培训

噢对了,下周六还有一个live,感兴趣的不妨来听我唠唠嗑,实时语音问答噢

知乎Live上线-学深度学习我们到底在学什么

转载文章请后台联系

侵权必究

(0)

相关推荐