【暑期预习】初二数学上册全等三角形​必考点 练习题,高分必看

以微课堂高中版

奥数国家级教练与四位高中特级教师联手打造,高中精品微课堂。
35篇原创内容
公众号

全等三角形

一、知识框架
二、知识概念
1.基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形.
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.
⑷对应边:全等三角形中互相重合的边叫做对应边.
⑸对应角:全等三角形中互相重合的角叫做对应角.
2.基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.
3.全等三角形的判定定理:
⑴边边边(SSS):三边对应相等的两个三角形全等.
⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.
⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.
⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.
⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.
4.角平分线
⑴画法
⑵性质定理:角平分线上的点到角的两边的距离相等.
⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.
5.证明的基本方法:
⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶
角、角平分线、中线、高、等腰三角形等所隐含的边角关系)
⑵根据题意,画出图形,并用数字符号表示已知和求证.
⑶经过分析,找出由已知推出求证的途径,写出证明过程.

【全等三角形】相关练习题

例题一:

对于条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等;以上能断定两直角三角形全等的有()

A.1个B.2个C.3个D.4个

【答案解析】

①两条直角边对应相等,根据 “ SAS ”,正确;

②斜边和一锐角对应相等,根据“ AAS ”,正 确;

③斜边和一直角边对应相等,根据“ HL ”, 正确;

④直角边和一锐角对应相等,根据“ ASA”或 “ AAS ”,正确;故选:D .

例题二:

【答案解析】

来源 网络 | 侵删

以微课堂小学版

小学微课与各科学习资料
公众号
以微课堂初中版

奥数国家级教练与四名特级教师联手打造,初中生数学课堂。
公众号
以微课堂高中版

奥数国家级教练与四位高中特级教师联手打造,高中精品微课堂。
35篇原创内容
公众号

温馨提示

(0)

相关推荐