ML之DT&RFR&ExtraTR&GBR:基于四种算法(DT、RFR、ExtraTR、GBR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能
ML之DT&RFR&ExtraTR&GBR:基于四种算法(DT、RFR、ExtraTR、GBR)对Boston(波士顿房价)数据集(506,13+1)进行价格回归预测并对比各自性能
输出结果
Boston House Prices dataset
===========================
Notes
------
Data Set Characteristics:
:Number of Instances: 506
:Number of Attributes: 13 numeric/categorical predictive
:Median Value (attribute 14) is usually the target
:Attribute Information (in order):
- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town
- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per $10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in $1000's
:Missing Attribute Values: None
:Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
http://archive.ics.uci.edu/ml/datasets/Housing
This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics
...', Wiley, 1980. N.B. Various transformations are used in the table on
pages 244-261 of the latter.
The Boston house-price data has been used in many machine learning papers that address regression
problems.
**References**
- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
- many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)
设计思路
核心代码
class DecisionTreeRegressor(BaseDecisionTree, RegressorMixin):
"""A decision tree regressor.
Read more in the :ref:`User Guide <tree>`.
Parameters
----------
criterion : string, optional (default="mse")
The function to measure the quality of a split. Supported criteria
are "mse" for the mean squared error, which is equal to variance
reduction as feature selection criterion and minimizes the L2
loss
using the mean of each terminal node, "friedman_mse", which
uses mean
squared error with Friedman's improvement score for potential
splits,
and "mae" for the mean absolute error, which minimizes the L1
loss
using the median of each terminal node.
class RandomForestRegressor(ForestRegressor):
"""A random forest regressor.
A random forest is a meta estimator that fits a number of classifying
decision trees on various sub-samples of the dataset and use averaging
to improve the predictive accuracy and control over-fitting.
The sub-sample size is always the same as the original
input sample size but the samples are drawn with replacement if
`bootstrap=True` (default).
Read more in the :ref:`User Guide <forest>`.
class ExtraTreesRegressor(ForestRegressor):
"""An extra-trees regressor.
This class implements a meta estimator that fits a number of
randomized decision trees (a.k.a. extra-trees) on various sub-samples
of the dataset and use averaging to improve the predictive accuracy
and control over-fitting.
Read more in the :ref:`User Guide <forest>`.
class GradientBoostingRegressor(BaseGradientBoosting, RegressorMixin):
"""Gradient Boosting for regression.
GB builds an additive model in a forward stage-wise fashion;
it allows for the optimization of arbitrary differentiable loss functions.
In each stage a regression tree is fit on the negative gradient of the
given loss function.
Read more in the :ref:`User Guide <gradient_boosting>`.
赞 (0)