【专题精讲】最短路径问题汇总,经典例题解析,期中必考内容

以微课堂学习群

 奥数国家级教练与四名特级

教师联手执教。

一、学习目标
1、熟练应用最短路径的基本模型;
2、掌握计算最短路径的长度的一般思想和方法;
3、理解最短路径问题的数学本质:转化思想、数形结合思想和函数思想。
二、知识重点
1、最短路径问题
是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括:
(1)确定起点的最短路径问题——即已知起始结点,求最短路径的问题;
(2)确定终点的最短路径问题——与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题;
(3)确定起点终点的最短路径问题——即已知起点和终点,求两结点之间的最短路径;
(4)全局最短路径问题——求图中所有的最短路径。
2、基本依据
两点之间线段最短、垂线段最短、轴对称的性质、平移的性质等。
3、常见的类型
两点一线,两线一点,两点两线等。
三、12个基本问题
1、问题原型:将军饮马、造桥选址、费马点
2、涉及知识:两点之间线段最短、垂线段最短、三角形三边关系、轴对称、平移
3、出题背景:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等
4、解题思路:找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
5、12个基本问题
经典例子解析
例一、在解决最短路径问题时,  我们通常利用_____、_____等变换把已知问题转化为容易解决的问题,从而作出最短路径的选择。
例二、已知,如图,在直线l的同侧有两点A、  B
(1)在图1的直线上找一点P使PA+PB最短;(2)在图2的直线上找一点P,使PA-PB最长
例三、如图所示,P为∠AOB内一点,P1,P2分别是P关于OA,OB  的对称点,P1P2交OA于M,交OB于N,若P1P2=8 cm,则△PMN的周长是( ) 
A.7 cm    B.5 cm C.8 cm   D.10 cm 
例四、如图,在等腰Rt△ABC中,D是BC边的中点,E是AB边上一动点,要使EC+ED最小,请找点E的位置
例五、如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?
参考答案
例一:轴对称平移 
例二:(1)作点B关于直线l的对称点C,连接AC交直线l于点P,连接BP;点P即为所求(2)连接AB并延长,交直线l于点P
例三:C  
例四:作点C关于AB的对称点C′,连接C′D与AB的交点为E点
例五:①过点A作AP⊥a,并在AP上向下截取AA′,使AA′=河的宽度;②连接A′B交b于点D;③过点D作DE∥AA′交a于点C;④连接AC.则CD即为桥的位置

来源网络 侵删

以微课堂小学版

小学微课与各科学习资料
公众号
以微课堂初中版

奥数国家级教练与四名特级教师联手打造,初中生数学课堂。
公众号
以微课堂高中版

奥数国家级教练与四位高中特级教师联手打造,高中精品微课堂。
35篇原创内容
公众号

温馨提示

(0)

相关推荐