【杂谈】有三AI不得不看的技术综述(超过100篇核心干货)
有三AI很少写零散的报导,因为我们的文章通常都是提炼与总结,一般遇到一个新方向,找技术综述读一读是最合适的开始,大家也可以拓展一下自己的知识边界,今天总结一下有三AI迄今为止发过的技术综述,同时会送出两份资料,也欢迎大家来投稿。
CV算法工程师指导手册
《深度学习视觉算法工程师成长指导手册》,超过11万字,360页word文档,可下载收藏打印,且还有大约1/3内容并未完结,最终可能超过20万字,相当于一本400页左右的书(已经确定会编撰成书),发送关键词“三人行必有AI”到公众号即可先睹为快。
本手册以深度学习视觉算法工程师为例,借鉴广泛采用的评级机制,分为4个大境界,即白身,初识,不惑,有识。每一个境界都由浅入深提供10多篇文章对核心知识点进行梳理,并对技术发展的最新水平进行简单介绍和展望,目前已经超过30期文章。
自然语言处理算法核心技术
这里共包括12篇文章,从NLP中常用的机器学习算法开始,介绍了NLP中常用的算法和模型。从朴素贝叶斯到XLnet,从RNN到transformerXL。公众号已经有很多的NLP相关的内容了,欢迎大家阅读。
GAN核心优化技术
被誉为新一代深度学习的生成对抗网络GAN,在近几年是实实在在的学术界和工业界宠儿,而且还大有可为,其中最核心的内容便是优化目标了。从基本的对抗损失,到各种训练技巧,这个综述你值得阅读,同时有三在很早的时候对GAN的应用和结构也做了一些总结。
图像分类核心技术
图像分类这个计算机视觉领域里最基本的问题真的很简单吗?恐怕大部分人接触的只是其中简单的内容。从基本的分类到多标签,细粒度,对抗攻击和不平衡样本处理,真正认识一下图像分类或许你需要这个16篇文章的总结,其中还包括了若干篇综述。
优秀的深度学习从业者习惯
一个优秀的深度学习从业者,必然是技能全面,擅长学习的人,在这里我们总结了从看论文到写代码,从刷论坛到刷比赛的一系列资源供大家挑选学习,几乎覆盖了所有学习资料和方法,而且还在不断更新。
国内AI研究院就业总结
在这个专栏中,我们和大家一起分享了国内12大研究院的背景,从最开始介绍的历史最悠久的微软亚洲研究院,到最后介绍的低调务实的网易人工智能,带大家领略了每个研究院的研究方向,团队情况,欣赏了各大研究院的拳头产品。
有三AI开源项目
这是有三AI开源的第一个GitHub项目,地址为https://github.com/longpeng2008/yousan.ai,在这里给大家捋清楚12大深度学习开源框架的快速入门,从熟练掌握不同任务数据的准备和使用,熟练掌握模型的定义,熟练掌握训练过程和结果的可视化,到熟练掌握训练方法和测试方法,真正快速掌握框架。
同时,在这个项目中还包括每周论文阅读,一周一个方向,系统性成长,目前CV+NLP加起来已经超过了20期。
另外,移动端的框架也已经准备开撸,只是时间有限未更新,感兴趣的朋友可以投稿。
主流CNN模型设计思想
在这里,我们给大家回顾了深度学习中各类具有代表性的CNN模型,详细分析了各类模型的特点,设计思想。
当然,上面只是抛砖引玉,更多的模型架构在我们的知识星球中更新,已经超过200期了。
12大主流图像分割模型
介绍完基本的模型架构之后,我们又紧接着介绍了12大主流的图像分割模型架构,对于做分割的你来说,不可错过。
图像和CNN起源
读史使人明智,既然从事深度学习计算机视觉,又岂能不深刻了解计算机视觉的发展简史,CNN和深度学习三巨头的由来呢?
人脸数据集
这一篇文章几乎道尽了人脸的数据集,囊括了人脸检测,关键点检测,人脸识别,人脸表情,人脸年龄,人脸姿态几乎所有方向,当时文章都险些超过公众号最大长度。
数据增强综述
很多实际的项目,我们都难以有充足的数据来完成任务,要保证完美的完成任务,有两件事情需要做好:(1)寻找更多的数据。(2)充分利用已有的数据进行数据增强,这里就是对当前数据增强方法的综述,覆盖有监督无监督,单样本多样本方法等。
另外,关于如何掌握深度学习中数据的使用,也给出了一些建议和海量的资源下载链接。
视频分类综述
视频虽是由多帧的图像组成,但视频分类任务与图像分类任务终究不同。此综述从传统方法和深度学习方法,数据集等维度对视频分类方法做了完整总结介绍。
闲聊图像分割
有三做的时间最久的就是图像分割了,从传统的阈值法,聚类,图割,水平集,到深度学习,这里就是我对图像分割算法的大总结。
弱监督图像分割综述
接着图像分割综述,我们又总结了弱监督图像分割综述,欢迎继续学习。
可视化
深度学习模型是个黑盒子,我们可以从网络结构,权重,训练曲线等各个维度进行可视化来理解它的学习过程和工作机制。
softmax loss解读
softmax loss是我们最熟悉的loss之一了,分类任务中使用它,分割任务中依然使用它。在这里,我们推导它的公式,总结了它的变种,尤其是在人脸识别任务中的应用。
Faster RCNN源代码解读
鉴于网络上目标检测的技术综述太多,我们没有再继续写作,而是解读了最优秀的目标检测框架之一Faster R-CNN, 详细剖析了各个模块的源代码。
传统图像降噪算法
图像降噪是一个小众而又不可或缺的课题,在这里我们对主流的传统图像降噪算法做了介绍,此外还有其他各个方向,有时间会写的。
美学研究
何以为美,从自拍到颜值到通用的美学问题,这是一个永远都没有答案,但是又迷人的话题,一切都才刚刚开始。
自动构图
作为一个摄影爱好者,研究构图是有三的一大乐趣,将AI技术用于构图,缩略图生成等领域也有着一定的应用前景,如果你也喜欢,不要错过噢。
知识星球生态
有三AI知识星球,这是有三重点建设的付费社区,从模型到数据,从机器学习到深度学习,从理论到实战,是公众号内容的补充和升华,可以更自由的交流和学习。仅仅模型架构就已经有超过4万字的解读,数据集也已经有几百G的共享。
人脸相关算法
在早期的时候,有三带了一些研究小组总结学习了人脸相关的算法并做了非常简单的输出,从颜值到年龄,表情等。
其实除了以上综述类的文章,还有一些虽然没有标注为总结或者综述但实际上也是综述的文章,就不一一点破了,留给有兴趣的朋友自己去找找吧。另外,还有关于公众号的一些非技术文章的总结,有助于了解生态,也欢迎阅读。
一周年总结
今年五月中旬有三AI一周年了,过去的一年里,有三从算法干到前端,后端,从编辑干到产品,运营,设计,创建了一个不小的生态。在这里,便是说说我们的初衷,生态和愿景。
现如今我们坚持不接广告,只做原创,系统输出,已经有超过400期文章了,在这里诚意邀请喜欢分享原创内容的同学加入,成为专栏作者,不仅可以督促自己学习,还可以获得个人收入以及平台的资源扶持。
三人行,必有AI,一起发光发热,变得更好!
转载文章请后台联系
侵权必究