电机正反转该如何实现?
无刷直流永磁电动机广泛地用于驱动和伺服系统中,在许多场合,不但要求电动机具有良好地启动和调节特性,而且要求电机能够正反转。本篇文章,我们着重来分析下有刷永磁直流电动机地正反转原理,为后文直流无刷电机正反转分析奠定基础。
为了更好的了解无刷电机的正反转原理,我们先以有刷电机为例来说明一下有刷电机的正反转是如何实现的。首先我们需要知道有刷电机的旋转原理,那么为了更好的了解有刷电机的工作原理,我们先来看下有刷电机的组成,下图为有刷电机的整体示意图:
图一:直流有刷电机
接下来我们将上图中的有刷电机拆开,可以看到有刷电机内部构造,首先看到的下图为定子永磁体:
图二:定子永磁体
然后是电刷,也即是有刷电机名词中的有刷的来源,就是有电刷,电刷的形式如下图三所示:
图三:电刷示意图
然后是转子结构,包括转子转轴、绕制铜线的铁芯、铜线电枢绕组、换向器组成,如下图四所示:
图四:转子结构示意图
上面介绍的电刷就是用于跟换向器进行连接的,连接的示意图如下图所示:
图五:电刷与换向器连接示意图
实际工作过程中,电刷是跟外部电源引线连接的,这样电流就会从电源正极出发,经过电刷,经过与电刷连接的换向器,经过绕组,经过电刷,回到电源负极。由于转子电枢线圈处于永磁体磁场中,所以通电的线圈就会在磁场中受到安培力的作用,这样转子就会转动起来。
图六:线圈电流方向及受力方向示意图
如上图六所示,红色箭头表示线圈的受力方向,蓝色箭头表示线圈的电流方向,这样线圈将会逆时针旋转。
当旋转到下图七所示的位置时,我们可以看到,换向器连接的电源的正负发生了变化,此时线圈中的电流方向也会发生变化,因此根据左手定则,可以判断出线圈受安培力的方向,这个力会让线圈继续保持逆时针旋转。
图七:换向器连接电源方向发生变化线圈电流及受力示意图
下图八表示线圈电流方向与图七电流方向相反,受力方向也相反,换向器,顾名思义就是让线圈中的电流流向发生变化,这里通过换向器跟电刷的连接,实现线圈的电流方向变化,实现线圈受力方向发生变化。
图八:换向器连接电源方向发生变化线圈电流及受力示意图
就这样,线圈不断的旋转,对应的换向器连接电源的极性不断发生变化,这样就保证了线圈能持续逆时针进行旋转下去,这就是有刷电机的旋转原理。
从上面的电机旋转原理来看,电机的受力跟磁场有关,跟线圈的通电方向有关,当磁场确定了,通电方向确定了,那么线圈受到安培力的方向就确定了。这个力的方向可以用左手定则来判定,具体左手定则如下图九所示:
图九:安培力判定示意图
根据上面介绍的内容,下面给出一个逆时针旋转的示意图:
图十:线圈逆时针旋转示意图
如果我们把上图十中的旋转方向规定为正向旋转,那么该怎么实现让线圈反方向旋转呢?我们说,线圈是在力的作用下转动的,那么我们只要改变力的方向是不是就可以实现线圈反方向旋转啊?如何改变力的方向呢?这里就有两种情况可以改变力的方向了。
第一种:改变线圈电流方向
这种方法可以将电刷电源的方向交换,那么对应的换向器的电源方向就会变化,因此线圈种的电流方向也会发生变化,电流方向发生了变化,就会让线圈受力的方向发生变化,具体如下图十一所示:
图十一:线圈顺时针旋转示意图
大家可以看到,根据此时电源方向及电流方向(蓝色箭头方向),可以用左手定则判断,此时线圈所受安培力的方向如图中的红色箭头所示,因此我们可以知道线圈会顺时针旋转,也就是说,这样实现了线圈反向转动。那么我们对比逆时针旋转的电流方向可以知道,顺时针转动时,电流方向发生了180度变化。这是第一种实现线圈(电机)正反转的方法。
第二种:改变永磁体磁场方向
此时将永磁体的磁极交换,磁场方向如紫色箭头所示,线圈的电流方向不变,那么由左手定则,可以判断出线圈左侧此时所受安培力的方向向上,线圈右侧此时所受安培力的方向向下,因此线圈此时将顺时针旋转。
图十二:永磁体磁极交换
因此交换永磁体磁极,也可以实现线圈反向旋转,那么其实交换永磁体磁极就实现了永磁体磁场方向发生了180度变化,这是第二种实现线圈(电机)正反转的方法。
好了,那么关于有刷电机如何实现正反转的两种方法就给大家讲完了,关于直流无刷电机,我们下篇文章再来给大家分享,谢谢大家!