运用RabbitMQ编写秒杀逻辑
简介
- 阅读本篇,需要具备
RabbitMQ
的知识,以及其在SpringBoot
中的应用。 - 本篇将使用
RabbitMQ
制作一个秒杀系统的雏形,其主要充当的作用是流量削峰。
系统架构图
- 秒杀逻辑分为两部分:
spike-client
:用于接收购买信息,查询redis
并扣除库存,购买成功则将用户信息发送到RabbitMQ
;spike-server
:用于处理交换机exchange
中的用户信息,程序将使用该信息完成扣库及订单生成操作。
- 在
redis
检查库存信息并确认用户具有购买资格后,可以在redis
中使用相关的用户信息,创建一个String
类型数据,待订单创建完成后,更新该数据的值为订单对象的json
格式字符串数据即可。- 客户端在得知购买成功后,需要持续请求个人的订单信息,该信息首先会在
redis
中查询,未持久化的订单只能获得空值; - 待系统持久化完成并写入
redis
后,客户端将请求并获取到真正的订单信息; - 客户端获取信息后,进入支付阶段。
- 客户端在得知购买成功后,需要持续请求个人的订单信息,该信息首先会在
spike-server服务端
- 大部分是常规的项目代码,会着重介绍其中较为重要的关于
RabbitMQ
的部分。 - 模块架构:
spike_goods
的数据库表同goods
数据库表一致:- 注意,这里没有编写
SpikeGoods.java
,该类和Goods.java
源码是完全一致的。
- 注意,这里没有编写
CREATE TABLE `goods` ( `id` int(11) NOT NULL AUTO_INCREMENT, `description` varchar(30) NOT NULL, `spu` varchar(30) NOT NULL, `sku` varchar(30) NOT NULL, `balance` int(11) NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8;
GoodsMapper.xml
及GoodsServiceImpl.java
源码:
<?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd"><mapper namespace="cn.dylanphang.spikeserver.mapper.GoodsMapper"> <select id="findBySku" resultType="goods" parameterType="string"> SELECT * FROM goods WHERE sku = #{goodsSku}; </select> <update id="modifyBalance"> UPDATE goods SET balance = #{param2} WHERE sku = #{param1}; </update></mapper>
package cn.dylanphang.spikeserver.service.impl;import cn.dylanphang.spikeserver.mapper.GoodsMapper;import cn.dylanphang.spikeserver.pojo.Goods;import cn.dylanphang.spikeserver.service.GoodsService;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import javax.annotation.Resource;/** * @author dylan * @date 2020/12/16 */@Service("goodsService")@Transactional(rollbackFor = Exception.class)public class GoodsServiceImpl implements GoodsService { @Resource private GoodsMapper goodsMapper; @Override public Goods findBySku(String goodsSku) { return this.goodsMapper.findBySku(goodsSku); } @Override public void modifyBalance(String goodsSku, Integer finalQuantity) { this.goodsMapper.modifyBalance(goodsSku, finalQuantity); } @Override public void changeBalance(String goodsSku, Integer changeQuantity) { int finalQuantity = this.findBySku(goodsSku).getBalance() - changeQuantity; if (finalQuantity < 0) { throw new RuntimeException("Balance is not enough."); } this.modifyBalance(goodsSku, finalQuantity); }}
SpikeGoodsMapper.xml
及SpikeGoodsMapperImpl.java
源码:- 其中扣库的过程是先查询,后扣减,并没有将
sql
置于同一条语句中; - 关于
FOR UPDATE
字句,该字句在使用队列的情况下,会造成一定的资源浪费,但后续使用非队列进行对比实验时,需要使用到此字句保存事务的一致性; - 方法
modifyBalance
中手动延时80ms
模拟处理缓慢的情况。
- 其中扣库的过程是先查询,后扣减,并没有将
<?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd"><mapper namespace="cn.dylanphang.spikeserver.mapper.SpikeGoodsMapper"> <select id="findBySku" resultType="goods" parameterType="string"> SELECT * FROM spike_goods WHERE sku = #{goodsSku} FOR UPDATE; </select> <update id="modifyBalance"> UPDATE spike_goods SET balance = #{param2} WHERE sku = #{param1}; </update> <insert id="insert" parameterType="goods"> INSERT INTO spike_goods (description, spu, sku, balance) VALUES (#{description}, #{spu}, #{sku}, #{balance}); </insert> <delete id="truncate" parameterType="string"> DELETE FROM spike_goods WHERE sku = #{goodsSku}; </delete></mapper>
package cn.dylanphang.spikeserver.service.impl;import cn.dylanphang.spikeserver.mapper.SpikeGoodsMapper;import cn.dylanphang.spikeserver.pojo.Goods;import cn.dylanphang.spikeserver.service.GoodsService;import cn.dylanphang.spikeserver.service.SpikeGoodsService;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import javax.annotation.Resource;/** * @author dylan * @date 2020/12/16 */@Service("spikeGoodsService")@Transactional(rollbackFor = Exception.class)public class SpikeGoodsServiceImpl implements SpikeGoodsService { @Resource private GoodsService goodsService; @Resource private SpikeGoodsMapper spikeGoodsMapper; @Override public Goods findBySku(String goodsSku) { return this.spikeGoodsMapper.findBySku(goodsSku); } @Override public void modifyBalance(String goodsSku, Integer finalQuantity) throws InterruptedException { // *.模拟扣库缓慢的情况 Thread.sleep(80); this.spikeGoodsMapper.modifyBalance(goodsSku, finalQuantity); } @Override public void changeBalance(String goodsSku, Integer changeQuantity) throws InterruptedException { int finalQuantity = this.findBySku(goodsSku).getBalance() - changeQuantity; if (finalQuantity < 0) { throw new RuntimeException("Balance is not enough."); } this.modifyBalance(goodsSku, finalQuantity); } @Override public void insert(Goods goods) { this.spikeGoodsMapper.insert(goods); } @Override public void spikeGoods(String goodsSku, Integer quantity) { // 1.库存扣减 this.goodsService.changeBalance(goodsSku, quantity); // 2.获取商品信息 final Goods goods = this.goodsService.findBySku(goodsSku); goods.setBalance(quantity); // 3.设置秒杀商品 this.insert(goods); } @Override public void truncate(String goodsSku) { this.spikeGoodsMapper.truncate(goodsSku); }}
SpikeController
中提供了上架秒杀商品接口,及相关处理非队列实验时所需要的接口:
package cn.dylanphang.spikeserver.controller;import cn.dylanphang.spikeserver.pojo.Goods;import cn.dylanphang.spikeserver.service.GoodsService;import cn.dylanphang.spikeserver.service.SpikeGoodsService;import lombok.extern.slf4j.Slf4j;import org.springframework.data.redis.core.RedisTemplate;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.RestController;import javax.annotation.Resource;/** * @author dylan * @date 2020/12/16 */@RestController@Slf4jpublic class SpikeController { @Resource private GoodsService goodsService; @Resource private SpikeGoodsService spikeGoodsService; @Resource private RedisTemplate<String, Object> redisTemplate; @RequestMapping("/find") public Goods find(String goodsSku) { return this.goodsService.findBySku(goodsSku); } /** * 决定指定商品用于秒杀的数量。并将该数量的sku和quantity写入redis用于预查询。 * * @param goodsSku sku * @param quantity quantity */ @RequestMapping("/spike") public void spike(String goodsSku, Integer quantity) { // *.以下两条业务代码需要放置在同一个Service中 try { this.spikeGoodsService.spikeGoods(goodsSku, quantity); this.redisTemplate.opsForValue().set(goodsSku, quantity); } catch (Exception e) { log.info("库存不足"); } } @RequestMapping("/rollback") public void rollback(String goodsSku, Integer quantity) { this.goodsService.modifyBalance(goodsSku, quantity); this.spikeGoodsService.truncate(goodsSku); } /** * 该接口提供直接购买的方式。用于测试2000并发下系统是否崩溃。 * * @param identity id * @param goodsSku sku * @param quantity quantity */ @RequestMapping("/directBuy") public String directBuy(String identity, String goodsSku, Integer quantity) { // *.在此方法中实际还需要创建订单并返回该订单的编号,在创建订单的方法中去修改库存,此处省略 try { this.spikeGoodsService.changeBalance(goodsSku, quantity); } catch (Exception e) { log.info(identity + "购买失败。请稍后再试。"); return "[" + identity + "] Failure. No stock."; } log.info(identity + "购买" + quantity + "个" + goodsSku + "等待支付。订单号为:BA[" + identity + "]3740027734074"); return "[" + identity + "] Successful."; }}
RabbitmqConfig.java
将在系统启动时,创建项目所需要的队列、交换机,及完成它们之间的绑定操作:
package cn.dylanphang.spikeserver.config;import org.springframework.amqp.core.*;import org.springframework.context.annotation.Bean;import org.springframework.context.annotation.Configuration;/** * @author dylan * @date 2020/12/16 */@Configurationpublic class RabbitmqConfig { private static final String QUEUE_NAME = "orderQueue"; private static final String EXCHANGE_NAME = "orderExchange"; private static final String ROUTING_KEY = "goods.order"; /** * 该Queue是创建给spike-server中的@RabbitListener用于接收信息的。 * * @return Queue */ @Bean("orderQueue") public Queue orderQueue() { return new Queue(QUEUE_NAME); } /** * 该Exchange是创建给spike-client用于发布消息的。类型为Topic。 * * @return Exchange */ @Bean("orderExchange") public Exchange orderExchange() { return new TopicExchange(EXCHANGE_NAME); } /** * 绑定Queue与Exchange让队列明确需要到那个Exchange中接收消息,并指定该Queue的所接收信息必须携带的routingKey. * * @param orderQueue Queue * @param orderExchange Exchange * @return Binding */ @Bean public Binding binding(Queue orderQueue, Exchange orderExchange) { return BindingBuilder.bind(orderQueue).to(orderExchange).with(ROUTING_KEY).noargs(); }}
OrderListener
将从队列中有序地取出购买信息并处理:
package cn.dylanphang.spikeserver.listener;import cn.dylanphang.spikeserver.service.SpikeGoodsService;import com.fasterxml.jackson.core.JsonProcessingException;import com.fasterxml.jackson.databind.ObjectMapper;import lombok.extern.slf4j.Slf4j;import org.springframework.amqp.rabbit.annotation.RabbitListener;import org.springframework.stereotype.Component;import javax.annotation.Resource;import java.util.Properties;/** * @author dylan * @date 2020/12/16 */@Component@Slf4jpublic class OrderListener { private static final String QUEUE_NAME = "orderQueue"; @Resource private SpikeGoodsService spikeGoodsService; @RabbitListener(queues = QUEUE_NAME) public void handleOrder(String message) { final ObjectMapper objectMapper = new ObjectMapper(); try { final Properties properties = objectMapper.readValue(message, Properties.class); final String name = properties.getProperty("identity"); final String sku = properties.getProperty("goodsSku"); final Integer quantity = Integer.valueOf(properties.getProperty("quantity")); // *.在此方法中实际还需要创建订单并返回该订单的编号,在创建订单的方法中去修改库存,此处省略 try { this.spikeGoodsService.changeBalance(sku, quantity); } catch (Exception e) { log.info(name + "购买失败。请稍后再试。"); return; } log.info(name + "购买" + quantity + "个" + sku + "等待支付。订单号为:BA[" + name + "]3740027734074"); } catch (JsonProcessingException e) { log.error(e.getMessage()); throw new RuntimeException(e); } }}
application.yml
中的配置如下:- 使用了
druid
数据库连接池; spike-server
服务端的启动端口为9090
。
- 使用了
spring: datasource: druid: db-type: com.alibaba.druid.pool.DruidDataSource driver-class-name: com.mysql.cj.jdbc.Driver url: jdbc:mysql://localhost:3306/mall?serverTimezone=GMT%2B8&useAffectedRows=true username: root password: root # 初始连接数 initial-size: 5 # 最小连接数 min-idle: 10 # 最大连接数 max-active: 20 # 获取连接超时时间 max-wait: 5000 # 连接有效性检测时间 time-between-eviction-runs-millis: 60000 # 连接在池中最小生存的时间 min-evictable-idle-time-millis: 300000 # 连接在池中最大生存的时间 max-evictable-idle-time-millis: 900000 test-while-idle: true test-on-borrow: false test-on-return: false # 检测连接是否有效 validation-query: select 1 rabbitmq: host: 127.0.0.1 port: 5672 username: dylan password: 123456 virtual-host: /spike-system redis: host: 192.168.88.210 port: 6379mybatis: mapper-locations: classpath:mapper/*xml type-aliases-package: cn.dylanphang.spikeserver.pojoserver: port: 9090
spike-client客户端
- 此模块用于判定用户是否购买成功,并将相关购买成功的用户信息,发送到消息队列中。
- 模块架构:
RedisConfig.java
源码如下,用于自定义RedisTemplate<String, Object>
对象:- 此配置类可以省略,实验存入
redis
的数据仅仅是商品库存信息,但多数情况下,项目都会构建此类,用于存储对象; - 需要知道
SpringBoot
默认不提供RedisTemplate<String, Object>
对象; SpringBoot
仅提供自动配置的RedisTemplate<Object, Object>
和RedisTemplate<String, String>
对象。
- 此配置类可以省略,实验存入
package cn.dylanphang.spikeclient.config;import com.fasterxml.jackson.databind.ObjectMapper;import org.springframework.context.annotation.Bean;import org.springframework.context.annotation.Configuration;import org.springframework.data.redis.connection.RedisConnectionFactory;import org.springframework.data.redis.core.RedisTemplate;import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;import org.springframework.data.redis.serializer.StringRedisSerializer;/** * 本类用于自定义RedisTemplate,如果需要用于直接存储pojo类,那么该类需要进行序列化。 * 数据需要在网路上进行传输,一般都需要进行序列化操作。 * 其中主要目的是让value对象可以使用ObjectMapper进行转换后再序列化,重点是Jackson2JsonRedisSerializer<Object>与ObjectMapper。 * * @author dylan * @date 2020/12/16 */@Configurationpublic class RedisConfig { @Bean public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) { // 0.创建RedisTemplate对象并设置连接方式,默认是lettuce RedisTemplate<String, Object> template = new RedisTemplate<>(); template.setConnectionFactory(redisConnectionFactory); // 1.字符串序列化和对象序列化 final StringRedisSerializer stringRedisSerializer = new StringRedisSerializer(); final Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<>(Object.class); // 2.将对象序列化为Json字符串格式的数据,需要为序列化实例设置一个ObjectMapper对象 // *.如果不对ObjectMapper进行任何配置,那么从redis中取出来的对象会被封装在一个LinkedHashMap中 jackson2JsonRedisSerializer.setObjectMapper(new ObjectMapper()); // 3.key采用String的方式序列化,value采用Jackson的方式序列化 template.setKeySerializer(stringRedisSerializer); template.setValueSerializer(jackson2JsonRedisSerializer); template.setHashKeySerializer(stringRedisSerializer); template.setHashValueSerializer(jackson2JsonRedisSerializer); // 4.初始化RedisTemplate对象 template.afterPropertiesSet(); return template; }}
RedisServiceImpl.java
源码如下,使用redisTemplate
对象操作redis
中的数据:- 对于
redis
来说单条的语句可以保证事务的原子性的。
- 对于
package cn.dylanphang.spikeclient.service.impl;import cn.dylanphang.spikeclient.service.RedisService;import org.springframework.data.redis.core.RedisTemplate;import org.springframework.stereotype.Service;import javax.annotation.Resource;/** * @author dylan * @date 2020/12/16 */@Service("redisService")public class RedisServiceImpl implements RedisService { @Resource private RedisTemplate<String, Object> redisTemplate; @Override public void modify(String goodsSku, Integer quantity) { // *.秒杀自设置的一刻开始就会创建一个redis的String类型数据用于存储秒杀商品的库存信息,从redis中扣减数量 final Long decrement = this.redisTemplate.opsForValue().decrement(goodsSku, quantity); if (decrement != null && decrement < 0) { throw new RuntimeException("No any stock."); } }}
SpikeController.java
源码如下:- 使用
redisService
检查redis
中相关商品是否有库存; - 使用
objectMapper
对象将数据包装为json
格式的字符串; - 使用
rabbitTemplate
中提供的converAndSend
方法,将包装后的数据发送到交换机exchange
中。
- 使用
package cn.dylanphang.spikeclient.controller;import cn.dylanphang.spikeclient.service.RedisService;import com.fasterxml.jackson.core.JsonProcessingException;import com.fasterxml.jackson.databind.ObjectMapper;import lombok.extern.slf4j.Slf4j;import org.springframework.amqp.rabbit.core.RabbitTemplate;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.RestController;import javax.annotation.Resource;import java.util.HashMap;/** * spike-client将需要处理的数据使用ObjectMapper进行处理,得到Json格式字符串,并发送到Exchange: orderExchange中。 * spike-server中的@RabbitListener会通过orderQueue持续监听orderExchange中是否有消息,如果有则会被orderQueue所接收到。 * routingKey是用于识别筛选orderQueue的标志,orderExchange采用的是Topic类型,那么routingKey的设定会更加灵活。 * * @author dylan * @date 2020/12/16 */@RestController@Slf4jpublic class SpikeController { private static final String EXCHANGE_NAME = "orderExchange"; private static final String ROUTING_KEY = "goods.order"; @Resource private RedisService redisService; @Resource private RabbitTemplate rabbitTemplate; /** * Listener中采用线程休眠80ms模拟处理缓慢的情况,此时使用redis存储库存信息加以控制,因无库存而购买失败的用户会获得即时反馈。 * * @param identity id * @param goodsSku sku * @param quantity quantity * @return string * @throws JsonProcessingException exception */ @RequestMapping("/buy") public String buy(String identity, String goodsSku, Integer quantity) throws JsonProcessingException { // 1.修改redis中的库存信息,其中的库存信息在秒杀确认的时候被写入了redis中,如果抛出异常,则抢购失败 try { this.redisService.modify(goodsSku, quantity); } catch (Exception e) { return "[" + identity + "] Failure. No stock."; } // 2.将参数转为Json格式的字符串,实际中形参可能是一个pojo类型,那么此时可以直接使用ObjectMapper转换为Json格式字符串 final HashMap<String, Object> hashMap = new HashMap<>(3); hashMap.put("identity", identity); hashMap.put("goodsSku", goodsSku); hashMap.put("quantity", quantity); final ObjectMapper objectMapper = new ObjectMapper(); final String message = objectMapper.writeValueAsString(hashMap); // 3.发送到消息队列中 this.rabbitTemplate.convertAndSend(EXCHANGE_NAME, ROUTING_KEY, message); // 4.当前端收到本条信息后,需要持续请求另一个controller以获取已创建好的订单编号等信息,用于支付业务 return "[" + identity + "] Successful."; } @RequestMapping("/getOrder") public void getOrder(String identity) { // *.考虑到成功抢购的人才会请求此接口,那么可以直接查询数据库,不需要建立新的队列了 log.info("根据用户信息查询订单信息,返回给前端用于支付业务"); }}
项目测试
测试类写在了
spike-client
中,其中分为两部分测试:- 不使用
RabbitMQ
,直接调用spike-server
所提供的/directBuy
接口; - 使用
RabbitMQ
,将调用spike-client
中所提供的/buy
接口。
- 不使用
其中线程池使用了
Google
提供的guava
包,线程池工具类ThreadUtils.java
源码如下:
package cn.dylanphang.spikeclient.util;import com.google.common.util.concurrent.ThreadFactoryBuilder;import java.util.concurrent.*;/** * @author dylan */public class ThreadUtils { public static void create(Runnable runnable) { ThreadFactory namedThreadFactory = new ThreadFactoryBuilder() .setNameFormat("demo-pool-%d").build(); ExecutorService singleThreadPool = new ThreadPoolExecutor(2000, 4000, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>(1024), namedThreadFactory, new ThreadPoolExecutor.AbortPolicy()); singleThreadPool.execute(runnable); }}
- 所使用的数据库表有两个,一个为
goods
,另一个为spike_goods
。测试类会首先模拟查询表goods
,获取目标商品的库存,并通过访问spike-server
中的/spike
接口,设置本商品的秒杀数量,该数据同时会写入redis
和spike_goods
。 - 关于测试的相关说明:
- 事实上,所有的测试都应该是自动化进行的,但本实验中的部分测试非自动化,仅是为了能更好地理解;
- 因此实际应用中,请以更为规范的方式去编写测试类。
1. 不使用RabbitMQ
- 测试类
SpikeClientNoRabbitMqTest.java
源码如下:- 每次进行测试前都会重置数据,保证商品实际库存为
2000
,用于秒杀的数量为1500
; - 本次实验的并发数量为
10000
条请求,为了便于观察,其中编写了计数代码,在实验结束后程序会输出成功的次数。
- 每次进行测试前都会重置数据,保证商品实际库存为
package cn.dylanphang.spikeclient;import cn.dylanphang.spikeclient.util.ThreadUtils;import com.fasterxml.jackson.core.JsonProcessingException;import com.fasterxml.jackson.databind.ObjectMapper;import lombok.extern.slf4j.Slf4j;import org.junit.jupiter.api.BeforeEach;import org.junit.jupiter.api.Test;import org.springframework.boot.test.context.SpringBootTest;import org.springframework.data.redis.core.RedisTemplate;import org.springframework.http.HttpMethod;import org.springframework.web.client.RestTemplate;import javax.annotation.Resource;import java.util.Properties;import java.util.concurrent.CountDownLatch;/** * @author dylan * @date 2020/12/17 */@Slf4j@SpringBootTestpublic class SpikeClientNoRabbitMqTest { public static final String FIND = "http://localhost:9090/find?goodsSku=7742994"; public static final String SPIKE = "http://localhost:9090/spike?goodsSku=7742994&quantity=1500"; public static final String ROLLBACK = "http://localhost:9090/rollback?goodsSku=7742994&quantity=2000"; public static final String GOODS_SKU = "7742994"; public static final int CONCURRENT_TIME = 10000; /** * RestTemplate中封装了httpclient和urlconnection。 */ private final RestTemplate restTemplate = new RestTemplate(); private final CountDownLatch countDownLatch = new CountDownLatch(CONCURRENT_TIME); private final ObjectMapper objectMapper = new ObjectMapper(); @Resource private RedisTemplate<String, Object> redisTemplate; @BeforeEach void init() throws JsonProcessingException { // 1.确认商品总数量 String body = this.restTemplate.getForEntity(FIND, String.class).getBody(); Properties properties = this.objectMapper.readValue(body, Properties.class); log.info("商品总数量为:{}", properties.getProperty("balance")); // 2.划分部分或全部用于秒杀 this.restTemplate.execute(SPIKE, HttpMethod.GET, null, null); log.info("用于秒杀数量:{}", "1500"); // 3.确认剩余数量 body = this.restTemplate.getForEntity(FIND, String.class).getBody(); properties = this.objectMapper.readValue(body, Properties.class); log.info("扣减后剩余为:{}", properties.getProperty("balance")); // 4.确认redis数据是否正常 final Object exist = this.redisTemplate.opsForValue().get(GOODS_SKU); log.info("redis中存在数量为:{}", null == exist ? "NaN" : (int) exist); } @Test void destroy() { // 1.恢复商品总数量与秒杀商品表 this.restTemplate.execute(ROLLBACK, HttpMethod.GET, null, null); // 2.恢复redis this.redisTemplate.delete(GOODS_SKU); } /** * 在spike-server的SpikeGoodsServiceImpl类中的modifyBalance里,进行了扣库缓慢的模拟操作。 * 此时spike-client中发出的请求受到了扣库缓慢的影响,部分用户因为等待超时而购买失败,部分用户就算购买成功,等待的时间也过长。 * * @throws InterruptedException 异常 */ @Test void test() throws InterruptedException { int[] finalCounter = new int[]{0}; for (int i = 0; i < CONCURRENT_TIME; i++) { final int counter = i; ThreadUtils.create(() -> { try { // *.模拟10000台主机同时直接发出请求 final String url = this.urlBuild(counter); final RestTemplate restTemplate = new RestTemplate(); countDownLatch.await(); final String str = restTemplate.getForEntity(url, String.class).getBody(); log.info(str); // *.计算成功次数 if (str != null && str.contains("Successful")) { finalCounter[0]++; } } catch (Exception e) { log.error(e.getMessage()); } }); this.countDownLatch.countDown(); } // *.防止此方法结束,导致等待中的线程一同结束,需要休眠大概120秒(可以更短,根据性能而定) Thread.sleep(120000); // *.输出成功次数 log.info("Successful times: {}", finalCounter[0]); } /** * 根据传入的数字拼接字符串。 * * @param counter 数字 * @return url */ private String urlBuild(int counter) { String identity = ""; if (counter < 10) { identity = "000" + counter; } else if (counter < 100) { identity = "00" + counter; } else if (counter < 1000) { identity = "0" + counter; } else { identity = "" + counter; } return "http://localhost:9090/directBuy?goodsSku=7742994&quantity=1&identity=" + identity; }}
- 运行测试类,得到如下结果,其中仅有
864
条购买请求成功写入MySQL
中:
- 对比数据库中
spike_goods
的数量:
- 显然用于秒杀的商品数量是符合事务的一致性,总数仍然为
864 + 636 = 1500
件。 - 但此时的购买失败率却惊人地高,观察控制台中的其他输出:
- 其中有直接因为服务器当前请求量过大,而直接被拒绝连接的请求所输出的错误日志,这个问题是很严重的,因为你当前系统一定不止这一个接口在提供服务,此时如果出现连接被拒绝,那么对于其他在用接口来说也会出现连接被拒绝的情况;
- 还有输出为
Failure. No stock
的,注意这里并不是因为没有库存,而是因为等待数据库连接对象超时导致的失败,我们的代码直接将等待超时抛出的异常归类为“失败,无库存。”,实际中需要进一步对异常进行细分处理。
- 提示:还记得之前在
SELECT
字句中使用的FOR UPDATE
吗?如果此时不在SELECT
中添加该字句,会导致事务失去一致性。 - 此时,不同的请求可能查询到同样的库存结果,显然这是不合理的。
FOR UPDATE
字句可以保证查询的数据需要用于更新,其保证了事务的一致性,但却消耗了不少的系统资源。
2. 使用RabbitMQ
- 实际项目中,我们需要解决的问题是:
- 首先,我们并不希望系统在一瞬间接受过多的请求,这可能会导致系统当前的其他接口的不可用性;
- 其次,即使在系统可以承受的请求范围内,我们的数据库
MySQL
也不应该在同一时间处理过多的业务,数据库连接池的最大连接数量是有限的,如果秒杀系统已经将所有的连接对象占用,也会导致其他需要使用连接对象的业务瘫痪; - 最后,是事务的一致性问题,在直接请求系统接口进行购买的前提下,就必须要保证线程之间事务的一致性。
- 线程之间的事务是相互独立的,一个线程中的事务失败并不会导致另一个线程中的事务失败,如何保证线程事物的一致性呢?
- 在查询语句上使用
FOR UPDATE
来进行锁表的操作,表明查询的数据是用于更新的; - 将操作写在同一个
sql
语句中,但这会造成一定的资源浪费,可能需要在dao
层中添加额外的方法。
- 在查询语句上使用
- 使用
RabbitMQ
可以解决以上所有的问题,spike-client
配合redis
中写入的库存信息,可以达到即时反馈用户是否购买成功的目的,同时通过RabbitMQ
将消息发送到指定的交换机中,spike-server
只需要从交换机中获取购买信息创建订单即可。 - 测试类
SpikeClientApplicationTest
如下:- 并发请求数量仍然为
10000
条; - 其中所有的线程都会请求
spike-client
中的/buy
接口,以请求购买,只有库存尚存的情况下,请求才会被放行; - 所有被放行的请求,数据都将被装换为
json
格式的字符串,并发送到指定的交换机exchange
中; - 而
spike-server
中的OrderListener
则持续监听orderQueue
中来自指定交换机exchange
中获取的消息:- 消息是逐条处理的;
- 消息只有完成持久化后,才会进行下一条消息的处理。
- 并发请求数量仍然为
package cn.dylanphang.spikeclient;import cn.dylanphang.spikeclient.util.ThreadUtils;import com.fasterxml.jackson.core.JsonProcessingException;import com.fasterxml.jackson.databind.ObjectMapper;import lombok.extern.slf4j.Slf4j;import org.junit.jupiter.api.AfterEach;import org.junit.jupiter.api.BeforeEach;import org.junit.jupiter.api.Test;import org.springframework.boot.test.context.SpringBootTest;import org.springframework.data.redis.core.RedisTemplate;import org.springframework.http.HttpMethod;import org.springframework.test.web.servlet.MockMvc;import org.springframework.test.web.servlet.request.MockHttpServletRequestBuilder;import org.springframework.test.web.servlet.request.MockMvcRequestBuilders;import org.springframework.test.web.servlet.setup.MockMvcBuilders;import org.springframework.web.client.RestTemplate;import org.springframework.web.context.WebApplicationContext;import javax.annotation.Resource;import java.util.Properties;import java.util.concurrent.CountDownLatch;@Slf4j@SpringBootTestclass SpikeClientApplicationTest { public static final String FIND = "http://localhost:9090/find?goodsSku=7742994"; public static final String SPIKE = "http://localhost:9090/spike?goodsSku=7742994&quantity=1500"; public static final String ROLLBACK = "http://localhost:9090/rollback?goodsSku=7742994&quantity=2000"; public static final String GOODS_SKU = "7742994"; public static final int CONCURRENT_TIME = 10000; /** * RestTemplate中封装了httpclient和urlconnection。 */ private final RestTemplate restTemplate = new RestTemplate(); private final CountDownLatch countDownLatch = new CountDownLatch(CONCURRENT_TIME); private final ObjectMapper objectMapper = new ObjectMapper(); @Resource private WebApplicationContext wac; @Resource private RedisTemplate<String, Object> redisTemplate; @BeforeEach void init() throws JsonProcessingException { // 1.确认商品总数量 String body = this.restTemplate.getForEntity(FIND, String.class).getBody(); Properties properties = this.objectMapper.readValue(body, Properties.class); log.info("商品总数量为:{}", properties.getProperty("balance")); // 2.划分部分或全部用于秒杀 this.restTemplate.execute(SPIKE, HttpMethod.GET, null, null); log.info("用于秒杀数量:{}", "1500"); // 3.确认剩余数量 body = this.restTemplate.getForEntity(FIND, String.class).getBody(); properties = this.objectMapper.readValue(body, Properties.class); log.info("扣减后剩余为:{}", properties.getProperty("balance")); // 4.确认redis数据是否正常 final Object exist = this.redisTemplate.opsForValue().get(GOODS_SKU); log.info("redis中存在数量为:{}", null == exist ? "NaN" : (int) exist); } @Test void destroy() { // 1.恢复商品总数量与秒杀商品表 this.restTemplate.execute(ROLLBACK, HttpMethod.GET, null, null); // 2.恢复redis this.redisTemplate.delete(GOODS_SKU); } /** * 模拟高并发情况下,使用RabbitMQ削峰的过程。 * * @throws InterruptedException 异常 */ @Test void contextLoads() throws InterruptedException { for (int i = 0; i < CONCURRENT_TIME; i++) { final int counter = i; ThreadUtils.create(() -> { try { // *.测试并发的时候需要将MockMvc置入线程内,模拟10000台主机同时发出请求,不能写到线程之外 final MockMvc mockMvc = MockMvcBuilders.webAppContextSetup(this.wac).build(); final String url = this.urlBuild(counter); final MockHttpServletRequestBuilder request = MockMvcRequestBuilders.get(url); countDownLatch.await(); final String str = mockMvc.perform(request).andReturn().getResponse().getContentAsString(); log.info(str); } catch (Exception e) { e.printStackTrace(); } }); this.countDownLatch.countDown(); } // *.防止此方法结束,导致等待中的线程一同结束,需要休眠大概40秒(可以更短,根据性能而定) Thread.sleep(40000); } /** * 根据传入的数字拼接字符串。 * @param counter 数字 * @return url */ private String urlBuild(int counter) { String identity = ""; if (counter < 10) { identity = "000" + counter; } else if (counter < 100) { identity = "00" + counter; } else if (counter < 1000) { identity = "0" + counter; } else { identity = "" + counter; } return "http://localhost:8080/buy?goodsSku=7742994&quantity=1&identity=" + identity; }}
- 运行测试类,可以观察到测试类中的所有线程,在测试线程休眠的
40
秒中,spike-client
就已经完成了所有的操作,并立即响应给用户是否成功的结果,而在此期间也没有出现任何的异常。
- 此时的
spike-server
服务端正在有序地从队列中获取购买信息,并逐条进行持久化操作:
- 待
spike-server
处理完毕后,数据库中的秒杀商品数量清空,没有出现超卖的现象:
- 此时
RabbitMQ
中的消息也一并被处理完毕:
- 在使用
RabbitMQ
后,所有的并发请求由始至终只会占用了一个数据库连接对象(可能不是同一个); - 同时也不再需要添加
FOR UPDATE
字句,所有的任务都将有序地进行,同时不会影响到系统其它部分的正常运作。
总结
- 使用
RabbitMQ
能有效地达到流量削峰的目的,减轻系统的负担。
赞 (0)